Signal and Tracking Generator

USG Series

USER MANUAL

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company. The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the

rights to change specification, equipment, and maintenance procedures at any time without notice.

Table of Contents

SAFETY INSTRUCTIONS	2
GETTING STARTED	5
USG Series Introduction	6
Appearance	8
First Time Use Instructions	15
OPERATION	21
Signal Generator Function	22
Tracking Generator Function (Primary RF	
Software)	32
FAQ	40
APPENDIX	41
USG Specifications	41
USG Dimensions	46
Declaration of Conformity	47
INDEX	47

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow during operation and storage. Read the following before any operation to insure your safety and to keep the instrument in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the instrument.

WARNIN	G
--------	---

Warning: Identifies conditions or practices that could result in injury or loss of life.

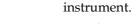
Caution: Identifies conditions or practices that could result in damage to the instrument or to other properties.

DANGER High Voltage

Attention Refer to the Manual

Earth (ground) Terminal

Frame or Chassis Terminal



Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline

- Avoid severe impact or rough handling that leads to damaging the instrument.
- Do not discharge static electricity to the instrument.

Do not place any heavy object on the

- Use only mating connectors, not bare wires, for the terminals.
- Do not disassemble the instrument unless you are qualified.
- Ensure reverse power to the USG output terminal does not exceed +30dBm.
- Ensure the DC voltage connected to the USG output terminal does not exceed beyond the range of -25Vdc to +25Vdc.

Power Supply

• 5V DC (USB power)

Cleaning

- Disconnect all cables or devices from the instrument before cleaning.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid.
- Do not use chemicals containing harsh material such as benzene, toluene, xylene, and acetone.

Operation Environment

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Temperature: 5°C to 45°C
- Humidity: 65% @ 50°C

Storage environment

• Location: Indoor

• Temperature: -20°C to 60°C; 65°C @ 70% RH

Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

GETTING STARTED

This chapter provides a brief overview of the USB Signal Generator (hereafter referred to as 'USG'), the package contents, instructions for first time use and an introduction to the signal generator display and tracking generator function.

USG Series Introduction	6
Series lineup	6
Main Features	
Package Contents and Standard Accessories	
Optional Accessories	
Appearance	8
Front Face	
Rear Face	8
Signal Generator Display - Java	9
Signal Generator Display – Android App	
Primary RF – Tracking Generator Function	
First Time Use Instructions	
Installing the USG USB Driver	15
Disabling the Device Driver Signature Enforcement in	
Windows 8	17
Installing the USG Software from Google Play	
Tracking Generator Software Installation (Primary RF).	

USG Series Introduction

The USG series signal and tracking generators can be operated as standalone continuous wave generators, or when paired to a PC and the GSP-730 spectrum analyzer, they can be used as tracking generators.

As continuous wave generators, the USG can be configured using any java supported PC or an Android device. The device can generate continuous wave, sweep, power sweep and frequency hopping waveforms.

As a tracking generator, the USG can be connected to a PC using dedicated software (Primary RF) to synchronize the USG with the GSP-730 spectrum analyzer.

Series lineup

The USG series consists of 5 models, spanning a number of different frequency ranges.

Model	Frequency	Phase Noise
USG-LF44	34.5 MHz to 4.4 GHz	< -97dBc/Hz@1GHz, 10kHz
USG-0103	100 MHz to 300 MHz	< -100dBc/Hz@200MHz, 10kHz
USG-0818	800 MHz to 1.8 GHz	< -97dBc/Hz@1.3GHz, 10kHz
USG-2030	2.0 GHz to 3.0 GHz	< -93dBc/Hz@2.5GHz, 10kHz
USG-3044	3.0 GHz to 4.4 GHz	< -88dBc/Hz@3.7GHz, 10kHz

Main Features

Performance	• Five models supporting a frequency range from 34.5 MHz to 4.4 GHz
	• 10kHz resolution
	• -30 dBm to 0 dBm output power
Features	Signal generator operation supports a plethora

of control devices:

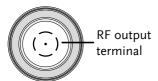
Any java-enabled PC: Windows, Mac or Linux PCs.

Any android device that supports USB OTG (USB On The Go) operation (via Google Play).

• Continuous wave, sweep wave, frequency hopping wave, power sweep wave.

Package Contents and Standard Accessories

Standard Accessories	Part number	Description
	Region dependant Region dependant	User manual CD USB A to Mini USB cable

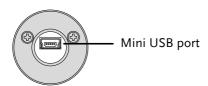

Optional Accessories

Standard Accessories	Part number	Description
	ADP-003	N female to SMA female adaptor

Appearance

Front Face

RF Output Terminal

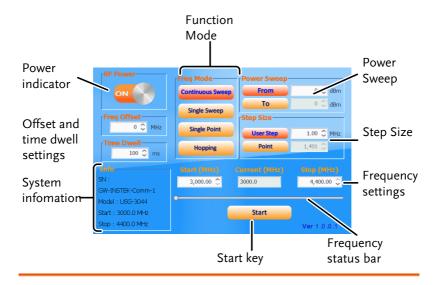

RF output port. Accepts RF outputs.

• Output: $0 \sim -30$ dBm

• Input impedance: 50Ω

• N-type: male

Rear Face


Mini USB port

Used to connect to a PC or Android device for configuration or control.

When connected to power, the mini USB port will be lit red.

Signal Generator Display - Java

Power Indicator Turns the RF output on or off.

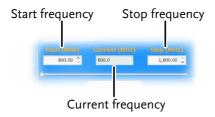
Function Mode Chooses the type of function to be performed by

the USG: Continuous Sweep, Single Sweep, Single

Point or Hopping

Power Sweep Sets the Start and Stop power level settings. The

From setting set the initial power level at the start of the sweep and the *To* setting sets the final power


level at the end of the sweep.

Step Size Sets the sweep step settings

Frequency Settings

Sets the basic start and stop frequency parameter settings. It also displays the instantaneous (current) output frequency, as shown below.

Bar

Frequency Status When the output is on, the point on the frequency status bar indicates the instantaneous frequency that is being output. When the output is off, the status bar can set the start and stop frequencies.

Start key

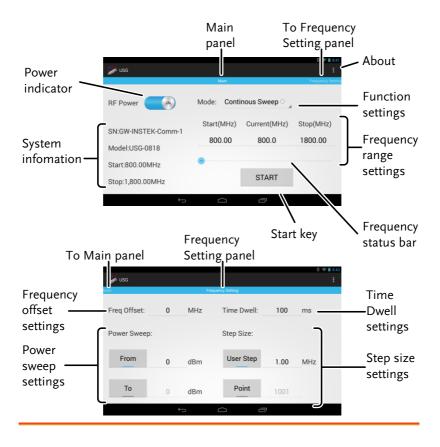
Pressing Start will output the selected function.

System Information The system information states the serial number, model and frequency range specifications.

Settings

Frequency Offset Offsets the frequency by ±50 kHz.

Time Dwell Settings


The time dwell settings determine how long the signal will stay (dwell) at each frequency point.

Step Size

The User Step and Point (inversely related) set the step resolution of the single and continuous sweep functions in hertz and number of points, respectively.

Signal Generator Display – Android App

Power Indicator Turns the RF output on or off.

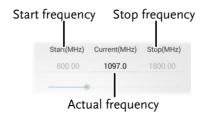
System The system information states the serial number, Information

model and frequency range specifications.

Main panel Indicates that the interface is in the Main panel.

Indicates that swiping to the left will go to the To Frequency Setting panel Frequency Setting panel.

11


Function Settings Chooses the type of function to be performed by

the USG: Continuous Sweep, Single Sweep, Single

Point or Hopping.

Settings

Frequency Range Sets the basic start and stop frequency parameter settings. It also displays the instantaneous (current) output frequency, as shown below.

Bar

Frequency Status When the output is on, the point on the frequency status bar indicates the instantaneous frequency that is being output. When the output is off, the status bar can set the start and stop frequencies.

Start key

Pressing Start will output the selected function.

About

Pressing About will display the GNU lesser GPL license requirements.

To Main panel

Indicates that swiping to the right will go to the Main panel.

panel

Frequency Setting Indicates that the interface is in the Frequency Setting panel.

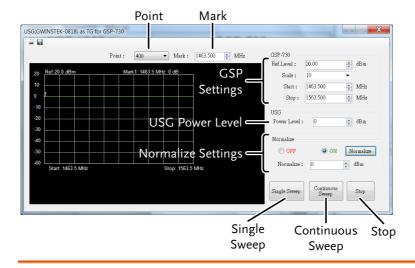
Settings

Frequency Offset Offsets the frequency by ±50 kHz.

Power Sweep Settings

Sets the start and stop power level settings. The *From* setting sets the initial power level at the start of the sweep, and the *To* setting sets the final power level at the end of the sweep.

Time Dwell The time dwell settings determine how long the signal will stay (dwell) at each frequency point.


Step Size The User Step and Point (inversely related) set the Settings step resolution of the single and continuous sweep

functions in hertz and number of points,

respectively.

Primary RF - Tracking Generator Function

Point Sets the number of frequency points for sweep.

Mark Sets the marker frequency.

GSP Settings Sets the reference level, scale and start and stop

frequencies.

Power Level Sets the USG output power level.

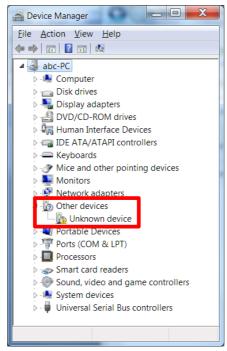
Normalize Settings Normalizes the USG output.

Single Sweep Outputs a single sweep.

Continuous Outputs a continuous sweep. Sweep

Stop Stops the sweep output.

First Time Use Instructions


The following instructions will go over all installation instructions that are required to operate the USG from a PC or from an android device.

Installing the USG USB Driver

Description	The USG connects via USB to a PC using a virtual COM port driver.
	For Linux and OS X systems, the USG device is recognized as a virtual COM port device automatically. A device driver does not need to be installed for these systems.
	For Microsoft Windows operating systems, the USG will be recognized as a virtual COM port device only after the USB driver is installed.
Requirements	Operating System: Windows XP, Vista, 7, 8*
Note	*Please note that for Windows 8, "Device driver signature enforcement" must first be disabled before the driver can be installed. See page 17 for details.
Steps 1	. Connect the USG to the PC using the USB Type A - Mini-B cable.
	If the PC asks for the driver, please go to step 5.
2	2. Open the Windows Device Manager. On Windows 7 for example:
	Start>Control Panel>Hardware and Sound>Device Manager

3. From the device tree go to: *Other devices>USB Serial Port*

The yellow error sign indicates that a driver has not been installed.

- 4. Right-click USB Serial Port and select *Update Driver Software*.
- 5. Select *Browse* my computer for driver software when prompted.

Manually select the *USG Driver* from the User Manual CD when prompted.

If the Windows Security pop-up appears, choose *Install this driver software anyway*.

6. The USG will now become available in the device tree under PORTS (COM & LPT).

Disabling the Device Driver Signature Enforcement in Windows 8

Description	To install the USG USB driver on Windows 8 systems, you must first disable "Device driver signature enforcement". This procedure is shown below.
Note !	Applicable to Windows 8 only!
Steps	 Go to the Charms bar → Click on Settings →

- Go to the Charms bar → Click on Settings →
 Click on Power → Hold the SHIFT key and click
 Restart → Click Troubleshoot → Advanced
 Options → Startup Settings → Restart → Select
 7) Disable driver signature enforcement.
- 2. The PC will now restart.
- 3. After the PC restarts, it will now be possible to install the USG USB driver on Windows 8 using the procedure shown previously.

Installing the USG Software from Google Play

Description

The USG software for controlling the USG as a signal generator can be found on the Google Play store.

Supported for Android 4.0 and above only.

Steps

- 1. Open Google Play on your Android device.
- 2. Enter *USB Signal Generator* in the Google Play search bar.

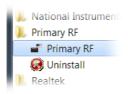
- 3. Install the USB Signal generator mobile app (GW Instek.Inc.)
- 4. The USG app will now be available in your App Draw.

 By default, the USG app will automatically load each time the USG is attached to your USB device.

Tracking Generator Software Installation (Primary RF)

Description	Primary RF is used in conjunction with the USG as a tracking generator for the GSP-730.
Note:	Only Windows operating systems (Windows XP, Vista, 7, 8) can be used with the Primary RF software.
Note: USB Drivers	Before the tracking generator software can be installed, the USG USB driver must first be installed. See page 15 for details.
	Note that the USB driver for the GSP-730's USB interface will be automatically installed when installing the Primary RF software.
Note: NI 488.2 Software	The tracking generator function requires National Instruments NI 488.2 software to be installed. This software is available on the NI website, www.ni.com.
D: : . II .: 4	O II II M 1 CD 1

Driver installation 1. Open the User Manual CD and click on PrimaryRF.msi.


2. The Primary RF Setup Wizard will appear.

Follow the prompts until it is all installed.

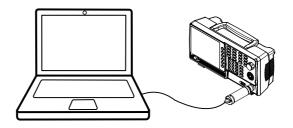
Note: If the Windows Security pop-up appears, choose *Install this driver software anyway*.

3. Primary RF will now be available in the Windows Start Menu.

OPERATION

Signal Generator Function	22
Setup ~ PC	
Setup ~ Android Device	23
Frequency Function Mode	
Selecting the Frequency	
Selecting the Frequency Step Size	
Time Dwell	
Frequency Offset	29
Selecting the Power Sweep	
Turning the Output On	
Tracking Generator Function	
(Primary RF Software)	32
Setup	
Tracking Generator Setup	
Normalizing the Tracking Generator	
Using the Tracking Generator	
Save Results - CSV	38
Save Results - Print	20

Signal Generator Function

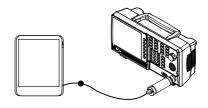

The signal generator function can be controlled with PC using a java program (using Windows, Mac OS X or Linux operating systems) or with an Android device.

Setup ~ PC

Description	The following chapter will show how to run the Java based application and the how to connect the USG to the PC.
	Any Windows, Mac OS X or Linux PC that can install the Java runtime library can be used to operate the signal generator function.
Note	The Java runtime needs to be installed before continuing. Visit www.java.com to download and install the Java Runtime.
Note !	For Windows, the USG USB driver must first be installed. See page 15 for details. Mac OS X and Linux systems do not need to install this driver.

Connection

- 1. Connect the USG to the RF port of the GSP-730.
- 2. Connect the PC to the USG using a Type Amini USB cable.



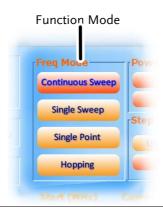
- 3. Open USG_GUI_v1001.jar file (accessible on the User Manual CD).
- The USG_GUI_v1001 file doesn't need to be installed.
- 4. If it is not already, turn the RF power on for the USG.

Setup ~ Android Device

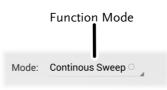
Description	up and connect the USG to an Android device.
Note	Install the USB signal generator software before connecting the USB to your Android device. See page 17.
Connection	1. Connect the USG to the RF port of the GSP-730.
	2. Connect the Android device to a USB OTG cable.
	Connect the OTG cable to the USG using a Type A-mini USB cable.

- 4. By default, the USG app should load up when the Android device is connected to the USG.
 - If the app does not automatically load up, go to the app drawer and run the USB signal generator app.
- 5. If it is not already, turn the RF power on for the USG.

If the USB cable is not connected properly, the system information in the Main panel will show "NONE". In this case, re-insert the USB cable and the OTG cable.



Frequency Function Mode


Description

There are four different frequency modes that can be selected.

Java App Display

Android App Display

Steps

1. In the *Freq Mode* panel(Java)/*Mode* drop-down list(Android), select the frequency function mode:

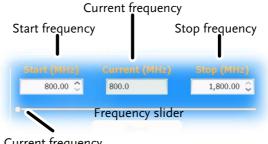
Continuous Sweep: Outputs a continuous sweep

Single Sweep: Outputs a single sweep

Single Point: Outputs a single frequency

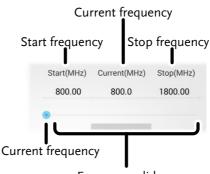
Hopping: Frequency hops between

two frequencies



Selecting the Frequency

Description


Sets the Start and Stop frequency for the USG.

Java App Display

Current frequency

Android App Display

Frequency slider

Steps

1. At the bottom of the screen set the Start and Stop frequencies for the continuous sweep, single sweep and hopping frequency modes.

For the Single Point frequency mode, only the Start frequency can be set.

The settable frequency range is limited by the USG model type.

Selecting the Frequency Step Size

Description

The step size settings determine the number of frequency points for the sweep modes.

Java App Display

Number of points

Android App Display

Number of points

Steps

- 1. To set the span of each step of a sweep, press User Step.
- 2. To set the number of discrete steps in a sweep, press Point.
 - The number or points or the frequency span of each step depends on the USG model.

User Step range 0.01MHz~100 MHz

Point range (Frequency span of USG

model / User Step range) + 1 = Point range

Time Dwell

Description

The Time Dwell setting determines the amount of time between each point in a sweep.

Java App Display

Android App Display

Steps

- 1. Press Time Dwell to set the amount of time between each step in milliseconds.
 - The Time Dwell setting range depends on the on the USG model.

Time Dwell

1ms~ 1000ms

The minimum step time is automatically set by the PC software. A 1ms Time Dwell can only be achieved with a fast system.

Frequency Offset

Description

The Frequency Offset setting will offset the frequency by ±0.05 MHz.

Java App Display

Android App Display

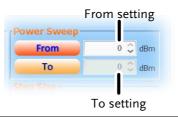
Steps

1. Press Freq Offset to set an offset to the frequency settings.

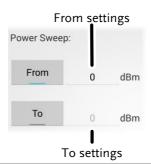
Offset $\pm 0.05 \,\mathrm{MHz}$

Selecting the Power Sweep

Description


Sets the power level for the start and stop frequencies.

For the sweep functions, sets the power level from the Start frequency to the Stop frequency.


For the Single Point function, the *From* setting sets the initial power level and the *To* setting, if needed, sets the final power level.

For the Hopping function, the *From* setting sets the power level of the Start Frequency and the *To* setting set the power level at the Stop frequency.

Java App Display

Android App Display

Steps

- 1. To set the initial power level, press *From*.
- 2. To set the final power level press *To*.
 - If you only want one power level, only set the *From* setting.

Power level range $0dBm \sim -30dBm$

Turning the Output On

Steps

After all the settings have been set press Start to turn on the output on.

For the single sweep function, press Start for each single sweep.

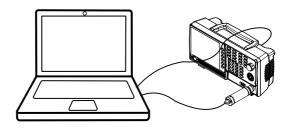
Java App Display

Android App Display

Tracking Generator Function (Primary RF Software)

The Primary RF software can be used as a tracking generator for the GSP-730 to track the frequency response of a DUT.

Please note that the Primary RF software has multiple functions and can be used for purposes other than as tracking generator software for the GSP-730. The other software functions are beyond the scope of this manual and will not be detailed.


Setup

Description

The following chapter will show how to connect the USG to the GSP-730 and to the host PC when using the USG as a tracking generator. To use the USG as a tracking generator, the Primary RF software must be used. See page 19 for installation details.

Connection

- 1. Connect the USG to the RF port of the GSP-730.
- 2. Connect the PC to the USG using a Type Amini USB cable.
- 3. Connect the PC to the rear-panel USB B port on the GSP-730 using a Type A-Type B USB cable.

Tracking Generator Setup

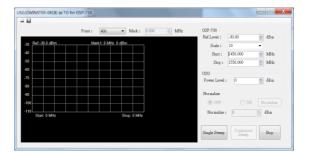
Description

The section will describe how to use the USG as a tracking generator for the GSP-730.

Operation

- 1. Launch PrimaryRF.
- 2. Click on the large GSP-730 button at the top of the window.

The spectrum analyzer settings will be shown* when the connection to the GSP-730 is working.



*Note: The above GSP-730 frequency and amplitude settings as well as the Capture function are not used for the tracking generator function and are thus not used in this manual. Using these functions is beyond the scope of this user manual.

3. Press *Action(A)* and select *USG as TG for GSP-730*.

A new window will open for the tracking generator options.

- 4. Press *Point* and set the number of frequency points that will be used in the sweep.
- 5. Press *Mark* and set the marker frequency.
- The marker frequency and amplitude will be shown at the top of the grid.

- 6. Under the GSP-730 panel set the basic spectrum analyzer settings:
 - Ref.Level: -40 ~ 20 dBm
 - •Scale: 1~10
 - Start frequency: Dependent on the connected USG model
 - •Stop Frequency: Dependent on the connected USG model

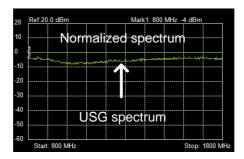
- 7. Set the USG power level:
 - Power Level: 0 ~ -30 dBm

Normalizing the Tracking Generator

Description

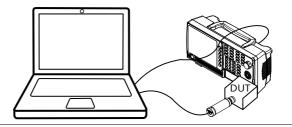
The tracking generator should first be normalized before a DUT is connected to the USG.

Operation


1. Setup Primary RF as shown above.

- 2. Press Single Sweep and perform a single sweep.
 - •It may take some time to complete a full sweep, depending on the fixed RBW (1MHz) and span 100MHz settings.
 - The Normalize panel will be selectable after the first sweep is performed.
- 3. Press *Normalize* after a full sweep has been performed. The Normalize radio button will then automatically be set to *ON*.
 - This will normalize the USG output for the Primary RF software.
- 4. Set the normalized amplitude level.
 - •Normalize: $0 \sim -30 dBm$.

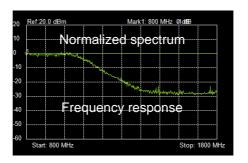
Display



Before performing normalization, make sure the USG has been on for at least 30 minutes to eliminate drift from effecting the normalization.

Using the Tracking Generator

Description

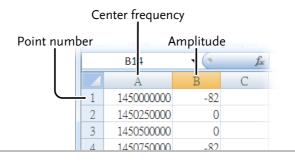

After normalization is performed, the USG can be used to measure the frequency response of a DUT.

Operation

- 1. Remove the USG from the GSP-730 and put the DUT between the USG and the GSP-730 RF ports.
- 2. Press *Sweep* or *Continuous* sweep to get the frequency response of the DUT.

Display

Example: Low pass filter frequency response.



Save Results - CSV

Description

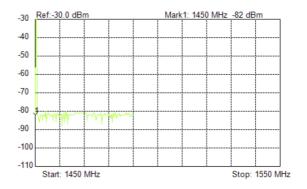
The spectrum results on GSP-730 can be saved as a CSV file.

CSV File Format

Operation

- 1. Perform either a sweep or a continuous sweep, as shown above. See page 37 for details.
- 2. After the sweep has completed, press the disk drive icon on the top left-hand side.

3. A pop-up window will now appear. Choose a file name and directory and select *Save*.



Save Results - Print

Description

The spectrum results on the GSP-730 can be saved as a PDF or printed.

Print Format

Results are printed in an inverted color format.

Operation

- 1. Perform either a sweep or a continuous sweep, as shown above. See page 37 for details.
- 2. After the sweep has completed, press the print icon on the top left-hand side.

- 3. A pop-up window will now appear. Choose a printer or choose to save as a PDF.
- 4. Press *Print* to print the results.

FAQ

- The USG will not connect to the PC.
- Primary RF will not allow me to connect to the GSP-730.
- The performance does not match the specification.

The USG will not connect to the PC.

If you are running a Windows system, make sure that the USG USB driver has been installed correctly, see page 15 for details. If you are running Windows 8, please make sure that "Device driver signature enforcement" is disabled before installing the driver, see page 17 for details.

Primary RF will not allow me to connect to the GSP-730.

Make sure that all the USB cables from the USG and GSP-730 are connected correctly, then make sure that the NI.488.2 software is installed before Primary RF is installed. See page 19 for installation details.

The performance does not match the specification.

Make sure the device is powered On for at least 30 minutes, within +20°C~+30°C. This is necessary to stabilize the unit to match the specification.

For more information, contact your local dealer or GWInstek at www.gwinstek.com / marketing@goodwill.com.

USG Specifications

The specifications apply when the USG is powered on for at least 30 minutes to warm-up to a temperature of 20°C to 30°C, unless specified otherwise.

USG-LF44

Frequency Range	34.5 MHz to 4.4 GHz	
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 150 Hz	at 100 MHz, 0 dBm Output
Resolution	10 kHz	
Output Control	On / Off	
On / Off Isolation	≤-75 dBc	
Mode Control	Fixed Frequency / Sing Hopping	le Sweep / CW Sweep /
Step Dwell	≤ 1000 ms in 1* ms ste	eps
Frequency Offset	-50 kHz to 50 kHz in 10	0 kHz steps
Amplitude Absolute	0 dBm ± 1 dB typical	at 2200MHz, 0 dBm Output
Accuracy		
Output Flatness	± 3.5 dB, ref. to 2200MHz	at 0 dBm Output
Phase noise	< -97 dBc/Hz	10 kHz offset @ 1.0 GHz, typical -100 dBc/Hz
	< -107 dBc/Hz	100 kHz offset @ 1.0 GHz, typical -110dBc/Hz
2nd Harmonics		0 dB Attenuation
	≤ -15 dBc, typical	34.5 MHz to 2.0 GHz, fundamental
	≤ -10 dBc, typical	2.0 GHz to 3.0 GHz, fundamental
	≤ -25 dBc, typical	3.0 GHz to 4.4 GHz, fundamental

3rd Harmonics		0 dB Attenuation
	\leq -5 dBc, typical	34.5 MHz to 2.0 GHz,
	••	fundamental
	\leq -20 dBc, typical	2.0 GHz to 3.0 GHz,
	· / / ·	fundamental
	≤ -40 dBc, typical	3.0 GHz to 4.4 GHz,
	= '' '' '' '' '' ''	fundamental
Spurious related to	≤ -30 dBc, typical	Resolution < 1 MHz
Resolution settings	≤ -65 dBc, typical	Resolution \geq 1 MHz
(Single Point Mode)	• • • • • • • • • • • • • • • • • • • •	
Spurious related to the	≤ -60 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-0103

Frequency Range	100 MHz to 300 MHz	
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 150 Hz	at 100MHz, 0 dBm Output
Resolution	10 kHz	
Output Control	On / Off	
On / Off Isolation	≤ -75 dBc	
Mode Control	Fixed Frequency / Single	Sweep / CW Sweep /
	Hopping	
Step Dwell	≤ 1000 ms in 1* ms step	
Frequency Offset	-50 kHz to 50 kHz in 10	kHz steps
Amplitude Absolute	-1.2 dBm \pm 1 dB typical	at 150 MHz, 0 dBm Output
Accuracy		
Output Flatness	± 1 dB, ref. to 150 MHz	at 0 dBm Output
Phase noise	< -100 dBc/Hz, typical	10 kHz offset @ 200 MHz
	< -110 dBc/Hz	100 kHz offset @ 200 MHz
2nd Harmonics		0 dB Attenuation
	≤ -45 dBc, typical	> 100 MHz, fundamental
3rd Harmonics		0 dB Attenuation
	≤ -7dBc, typical	\leq 150 MHz, fundamental
	≤-35 dBc, typical	> 150 MHz, fundamental
Spurious related to	≤-30 dBc, typical	Resolution < 1 MHz
Resolution settings	≤ -65 dBc, typical	Resolution $\geq 1 \text{ MHz}$
(Single Point Mode)		
Spurious related to the	\leq -60 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-0818

Frequency Range	800 MHz to 1.8 GHz	
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 1.2 kHz	at 800MHz, 0 dBm Output
Resolution	10 kHz	•
Output Control	On / Off	
On / Off Isolation	≤-75 dBc	
Mode Control	Fixed Frequency / Single	Sweep / CW Sweep /
Step Dwell	Hopping ≤ 1000 ms in 1* ms step	ne.
Frequency Offset	-50 kHz to 50 kHz in 10	
Amplitude Absolute	-0.8 dBm ± 1 dB typical	at 1000 MHz, 0 dBm
Amplitude Absolute	-0.6 dBm ± 1 dB typical	Output
Output Flatness	± 1 dB, ref. to 1000MHz	
Phase noise	< -97 dBc/Hz	10 kHz offset @ 1.3 GHz
Thuse hoise	< -102 dBc/Hz	100 kHz offset @ 1.3 GHz
2nd Harmonics		0 dB Attenuation
	≤ -25 dBc, typical	>800 MHz, fundamental
3rd Harmonics	, , ,	0 dB Attenuation
	≤ -25 dBc, typical	≤900 MHz, fundamental
	≤-35 dBc, typical	>900 MHz, fundamental
Spurious related to	≤-30 dBc, typical	Resolution < 1 MHz
Resolution settings	≤-65 dBc, typical	Resolution ≥ 1 MHz
(Single Point Mode)		
Spurious related to the	\leq -65 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-2030

Frequency Range	2.0 GHz to 3.0 GHz	
Output Power	-30 dBm to 0 dBm	in 1 dB steps
Internal Reference	25 MHz	aging ±1 ppm at first year
Frequency Accuracy	± 3 kHz	at 2 GHz, 0 dBm Output
Resolution	10 kHz	
Output Control	On / Off	
On / Off Isolation	≤-75 dBc	
Mode Control	Fixed Frequency / Single Sweep / CW Sweep /	
	Hopping	
Step Dwell	≤ 1000 ms in 1* ms s	teps

Frequency Offset	-50 kHz to 50 kHz in 10 kHz steps	
Amplitude Absolute	0 dBm ± 1 dB typical	at 2500 MHz, 0 dBm
Accuracy		Output
Output Flatness	\pm 1 dB, ref. to 2500MHz	at 0 dBm Output
Phase noise	< -93 dBc/Hz	10 kHz offset @ 2.5 GHz
	< -100 dBc/Hz	100 kHz offset @ 2.5 GHz
2nd Harmonics		0 dB Attenuation
	\leq -30 dBc, typical	2.0 GHz to 3.0 GHz,
		fundamental
3rd Harmonics		0 dB Attenuation
	≤ -45 dBc, typical	2.0 GHz to 3.0 GHz,
		fundamental
Spurious related to	≤ -30 dBc, typical	Resolution < 1MHz
Resolution settings	≤ -65 dBc, typical	Resolution ≥ 1MHz
(Single Point Mode)		
Spurious related to the	≤ -65 dBc, typical	
fundamental output		
(Single Point Mode)		

USG-3044

3.0 GHz to 4.4 GHz	
-30 dBm to 0 dBm	in 1 dB steps
25 MHz	aging ±1 ppm at first year
± 4.5 kHz	at 3 GHz, 0 dBm Output
10 kHz	
On / Off	
≤ -75 dBc	
Fixed Frequency / Single	Sweep / CW Sweep /
Hopping	
≤ 1000 ms in 1* ms steps	
-50 kHz to 50 kHz in 10 k	kHz steps
1 dBm ± 1 dB typical	at 3300 MHz, 0 dBm
	Output
± 2 dB, ref. to 3300MHz	at 0 dBm Output
< -88 dBc/Hz	10 kHz offset @ 3.7 GHz
< -94 dBc/Hz	100 kHz offset @ 3.7 GHz
	0 dB Attenuation
≤ -25 dBc, typical	3.0 GHz to 4.4 GHz,
	fundamental
	0 dB Attenuation
\leq -40 dBc, typical	3.0 GHz to 4.4 GHz,
	fundamental
	-30 dBm to 0 dBm 25 MHz ± 4.5 kHz 10 kHz On / Off ≤ -75 dBc Fixed Frequency / Single Hopping ≤ 1000 ms in 1* ms step -50 kHz to 50 kHz in 10 l 1 dBm ± 1 dB typical ± 2 dB, ref. to 3300MHz < -88 dBc/Hz < -94 dBc/Hz ≤ -25 dBc, typical

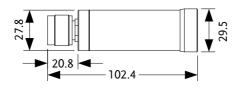
Spurious related to	≤ -30 dBc, typical	Resolution < 1MHz
Resolution settings	≤ -65 dBc, typical	Resolution ≥ 1MHz
(Single Point Mode)		
Spurious related to the	≤ -65 dBc, typical	
fundamental output		
(Single Point Mode)		

^{*:} Minimum step depands on the computer being used. This min. step will be automatically adjusted by the PC software. 1ms is achieved on a faster system.

Common Specifications

Software for PC:		
a. Primary RF suppo	rts operating system	: Windows 2000/XP/Vista/7/8
b. Java USG Control	Panel: Windows 200	00/XP/Vista/7/8 Linux/OS X
Software for mobile dev	ice:	
For Android 4.0 and	higher with OTG*	
Interface	USB 2.0	
USB Connector Type	Mini-B	
Supply Voltage	5V	nominal
RF Connector Type	N-type male	
Impedance	50 ohm	nominal
Output VSWR	< 1.5:1	Output level @ -30dBm
Max. DC voltage	+/-25VDC	<u> </u>
connected to output	•	
Max. Reverse Power	+30dBm	

^{*}Warning: Some Android devices with OTG support cannot run the USG app due to the OTG driver modifications by vendors.



USG Dimensions

Scale:mm

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

declare that the CE marking mentioned product

satisfies all the technical relations application to the product within the

scope of council:

Directive: EMC; LVD; WEEE; RoHS

The product is in conformity with the following standards or other

normative documents:

⊚ EMC		
EN 61326-1	Electrical equipment for measurement, control and laboratory use EMC requirements	
Conducted & Radiated Emission		Electrical Fast Transients
EN 55011 / EN 55032		EN 61000-4-4
Current Harmonics		Surge Immunity
EN 61000-3-2 / EN 61000-3-12		EN 61000-4-5
Voltage Fluctuations		Conducted Susceptibility
EN 61000-3-3 / EN 61000-3-11		EN 61000-4-6
Electrostatic Discharge		Power Frequency Magnetic Field
EN 61000-4-2		EN 61000-4-8
Radiated Immunity		Voltage Dip/ Interruption
EN 61000-4-3		EN 61000-4-11 / EN 61000-4-34
◎ Safety		
EN 61010-1 :	Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements	

GOODWILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Road, Tucheng District, New Taipei City 236, Taiwan

Tel: <u>+886-2-2268-0389</u> Fax: <u>+886-2-2268-0639</u>

GOODWILL INSTRUMENT (SUZHOU) CO., LTD.

No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011, China Tel: <u>+86-512-6661-7177</u> Fax: <u>+86-512-6661-7277</u>

Web: http://www.instek.com.cn Email: marketing@instek.com.cn

GOODWILL INSTRUMENT EURO B.V.

De Run 5427A, 5504DG Veldhoven, The Netherlands
Tel: <u>+31-(0)40-2557790</u>
Fax: <u>+31-(0)40-2541194</u>
Email: <u>sales@gw-instek.eu</u>

NDEX

Accessories
Caution symbol2
Cleaning the instrument3
Declaration of conformity 47
Display diagram
Android11
Java9
Primary RF
Tracking generator14
Disposal instructions 4
Disposal symbol 2
Environment
Safety instruction3
FAQ40
First time use instructions 15
Front face 8
Ground
Symbol2
List of features 6
Marketing
Contact40
Model differences 6
NI Software
NI 488.2 software19
Operation
Signal Generator22
Power on/off
Safety instruction3
Primary RF
Installation19
Installation

About disassembly	3
Contact	
Signal Generator	
Android setup	23
Frequency	26
Frequency offset	29
Function mode	25
Output	
PC setup	22
Power sweep	30
Step size	
Time dwell	
Specifications	
Common	
Dimensions	
USG-0103	42
USG-0818	
USG-2030	
USG-3044	
USG-LF44	41
Tracking Generator	
normalizing	35
operation	
Primary RF setup	
Print results	39
save results	
Setup	
hardware	32
software	33
USB driver	
Installation	15, 17
USG	
Google Play installation	18
Warning symbol	