Permanent Magnet Synchronous Generator Wind Inverter Module PEK-520

User Manual GW INSTEK PART NO. 82EK-11000M01

ISO-9001 CERTIFIED MANUFACTURER

G^W**INSTEK**

This manual contains proprietary information, which is protected by copyrights. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

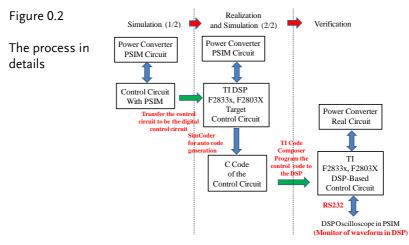
The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the right to change specifications, equipment, and maintenance procedures at any time without notice.

Table of Contents

Introduction	4
The Description on Chapters	12
Experiment 1 – Three Phase SVPWM Inverter	15
Circuit Simulation	15
Experiment Devices	19
Experiment Procedure	20
The purpose of experiment	23
The Experiment Result	23
The conclusion	28
Experiment 2 – Three Phase Grid-connected Inverter	29
Circuit Simulation	29
Experiment Devices	33
Experiment Procedure	34
The purpose of experiment	37
The experiment result	37
The Conclusion	38
Experiment 3 – Speed and Torque Control of PMSM	39
Circuit Simulation	39
Experiment Devices	42
Experiment Procedure	43
The purpose of experiment	46
The experiment result	46
The conclusion	48
Experiment 4 – Speed Control of PMSG	49
Circuit Simulation	49
Experiment Devices	5 5
Experiment Procedure	56

The purpose of experiment	59
The Experiment Result	59
The conclusion	
Experiment 5 – Wind Turbine Generator (WTG) Em	ulation 65
Circuit Simulation	
Experiment Devices	
Experiment Procedure	
The purpose of experiment	
The Experiment Result	
The conclusion	
Experiment 6 – Maximum Power Point Tracking of	WTG78
Circuit Simulation	78
Experiment Devices	82
Experiment Procedure	83
The purpose of experiment	86
The Experiment Result	87
The conclusion	92
Experiment 7 – PMSG Wind Power Generation Sys	tem)93
Circuit Simulation	93
Experiment Devices	97
Experiment Procedure	98
The purpose of experiment	
The experiment result	
The conclusion	109
Experiment 8 – Low Voltage Ride Through (LVRT) o	of PMSG
WTG System	110
Circuit Simulation	
Experiment Devices	
Experiment Procedure	
The purpose of experiment	
The Experiment Result	

The conclusion	125
Appendix A – PEK-520 Circuit Diagram	
T-Wind Emulator	
Grid Inverter	133
F28335 Delfino control CARD	143
Gate Driver	144
Gate Driver Power	145
Appendix B – C Code Burning Procedure	146
Appendix C – RS232 Connection	155


ntroduction

As the figure 0.1 shown, PEK-520, the Permanent Magnet Synchronous Generator Wind Inverter Module, consists of three parts: PEK-520_1, the PMSM Driver, PEK-520_2, the PMSG Driver and Grid-connecter Inverter, and the Permanent Magnet Synchronous Motor Module, which is a fully digital-control system. The purpose of this, as shown in the figure 0.2, is to provide a learning platform for power converter of specifically digital control, having users, via PSIM software, to understand the principle, analysis as well as design of power converter through simulating process. More than that, it helps convert, via SimCoder tool of PSIM, control circuit into digital control program and proceed to simulation with the circuit of DSP, eventually burning the control program, through simulating verification, in the DSP chip. Also, it precisely verifies the accuracy of designed circuit and controller via control and communication of DSP.

Figure 0.1

Permanent magnet synchronous generator wind inverter module

Thre are 8 experiments can be fulfilled by PEK-520 as follows:

- 1. Three Phase Stand-alone Inverter
- 2. Three Phase Grid-connected Inverter
- 3. Speed and Torque Control of PMSM
- 4. Speed Control of PMSG
- 5. Wind Turbine Generator (WTG) Emulation
- 6. Maximum Power Point Tracking of WTG
- 7. Grid-connected PMSG Wind Power Generation System)
- 8. Low Voltage Ride Through (LVRT) of PMSG WTG System)

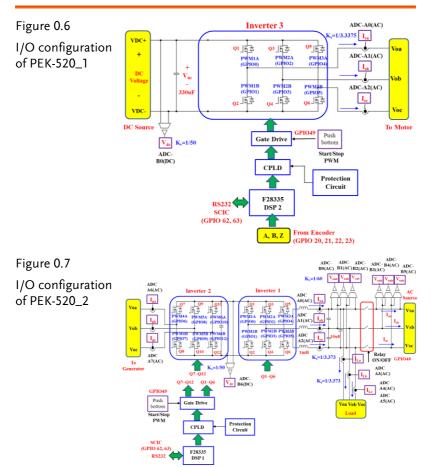
In addition to PEK-520, it is required to utilize PEK-005A auxiliary power module as figure 0.3 shown and PEK-006 JTAG burning module as figure 0.4 shown for experiments. Also, PTS-5000 experiment platform as figure 0.5 shown is necessary for completing the experiments.

Figure 0.3

Auxiliary power module

Figure 0.4

JTAG burning module


Figure 0.5

PTS-5000 experiment platform

G^wINSTEK

The DSP I/O pin configuration of PEK-520 is shown as the figures 0.6 and 0.7. Refer to the appendix A for the circuit diagrams of PEK-520, which can be divided into power circuit, sensing circuit, drive circuit and protection circuit. The sensing circuit is further divided into 2 sections; one is for test point measurement, and the other one is for feedback DSP control, both of which have varied attenuation amplifications individually as the following table 0-1 to table 0-4 shown.

	Table 0.1 PEK-520_1 test point measurement	nt ratio
	Sensing item Sen	sing ratio
1	DC input voltage (VDC)	0.0154
2	Wind turbine generator inverter output AB arm line voltage (VO-AB)	0.0150
3	Wind turbine generator inverter output BC arm line voltage (VO-BC)	0.0150
4	Wind turbine generator inverter output CA arm line voltage (VO-CA)	0.0150
5	Wind turbine generator inverter A phase output current (IO-A)	0.4768
6	Wind turbine generator inverter B phase output current (IO-B)	0.4768
7	Wind turbine generator inverter C phase output current (IO-C)	0.4768
	Table 0.2 PEK-520_2 test point measureme	ent ratio
	Sensing item	Sensing ratio
1	Generator inverter A phase output current (IG-A)	0.4768
2	Generator inverter B phase output current (IG-B)	0.4768
3	Generator inverter C phase output current (IG-C)	0.4768
4	DC link voltage (VBUS)	0.0154
5	Grid-connected inverter A phase output current (IO-A)	0.4768
6	Grid-connected inverter B phase output current (IO-B)	0.4768
7	Grid-connected inverter C phase output current (IO-C)	0.4768
8	Grid-connected inverter A phase load current (IL-A)	0.4768
9	Grid-connected inverter B phase load current (IL-B)	0.4768
10	Grid-connected inverter C phase load	0.4768

	current (IL-C)	
11	Grid-connected inverter output AB arm line voltage (VO-AB)	0.0287
12	Grid-connected inverter output BC arm line voltage (VO-BC)	0.0287
13	Grid-connected inverter output CA arm line voltage (VO-CA)	0.0287
14	Power grid AB arm line voltage (VS-AB)	0.0287
15	Power grid BC arm line voltage (VS-BC)	0.0287
16	Power grid CA arm line voltage (VS-CA)	0.0287

Table 0.3 PEK-520_1 DSP feedback ratio

	Sensing item	Sensing ratio
1	DC input voltage (VDC)	0.0202
2	Wind turbine generator inverter output AB arm line voltage (VO-AB)	0.0124
3	Wind turbine generator inverter output BC arm line voltage (VO-BC)	0.0124
4	Wind turbine generator inverter output CA arm line voltage (VO-CA)	0.0124
5	Wind turbine generator inverter A phase output current (IO-A)	0.2996
6	Wind turbine generator inverter B phase output current (IO-B)	0.2996
7	Wind turbine generator inverter C phase output current (IO-C)	0.2996

Table 0.4 PEK-520_2 DSP feedback ratio

	Sensing item	Sensing ratio
1	Generator inverter A phase output current (IG-A)	0.2996
2	Generator inverter B phase output current (IG-B)	0.2996
3	Generator inverter C phase output current (IG-C)	0.2996
4	DC link voltage (VBUS)	0.0202
5	Grid-connected inverter A phase output	0.2996

	current (IO-A)	
6	Grid-connected inverter B phase output current (IO-B)	0.2996
7	Grid-connected inverter C phase output current (IO-C)	0.2996
8	Grid-connected inverter A phase load current (IL-A)	0.2996
9	Grid-connected inverter B phase load current (IL-B)	0.2996
10	Grid-connected inverter C phase load current (IL-C)	0.2996
11	Grid-connected inverter output AB arm line voltage (VO-AB)	0.0169
12	Grid-connected inverter output BC arm line voltage (VO-BC)	0.0169
13	Grid-connected inverter output CA arm line voltage (VO-CA)	0.0169
14	Power grid AB arm line voltage (VS-AB)	0.0169
15	Power grid BC arm line voltage (VS-BC)	0.0169
16	Power grid CA arm line voltage (VS-CA)	0.0169

The Description on Chapters

See the chapter arrangements as follows

Brief	Briefly describes the experimental method, experimental items and circuit setup. It also explains the contents of each chapter.
Experiment 1 Three Phase Stand- alone Inverter	To get to know the principle of three phase SPWM and SVPWM. Realize the measurements of voltage and current via PEK-520-2 module, and learn the TI F28335 DSP IC pins, PWM and A/D hardware setting. Also understand how to proceed to DSP internal signal control and measurement via RS-232.
Experiment 2 Three Phase Grid- connected Inverter	To get to know the fundamental with structure of three phase grid-connected inverter, and learn not only the design method of phase-lock loop for three phase grid-connected inverter, but the
	design of both voltage loop and current loop controllers as well, further proceeding to the code programming via SimCoder, after well mapping out the grid-connected inverter.
Experiment 3	To get to know the fundamental of PMSG, encoder, calculation of speed, vector control
Speed and Torque Control of PMSM	theory as well as controller design for current and speed. To learn the way to establish circuit in simulation and proceed to the code programming via SimCoder, after well mapping out the DSP digital control circuit.

Experiment 4 Speed Control of PMSG	To get to know the fundamental of PMSG, vector control theory as well as controller design for current and speed. To learn the way to establish circuit in simulation and proceed to the code programming via SimCoder, after well mapping out the DSP digital control circuit.
Experiment 5 Wind Turbine Generator (WTG) Emulation	To get to know the fundamental of WTG and establish WTG model, further learning the way to simulate fundamental of WTG via motor and not only setting up the circuit in simulation of WTG simulation system, but proceeding to simulation as well. Finally, to map out the WTG simulation system via DSP digital control circuit.
Experiment 6 Maximum Power Point Tracking of WTG	WTG generates differed power curves in accordance with different wind speeds. In order to better take advantage of wind power, work point, in accord with wind speeds, is supposed to be altered for keeping it at the highest level of power curve, which is known as Maximum Power Point Tracking (MPPT). This experiment locates MPP curve, based on the attributes of wind turbine, and further design MPPT
	controller on the basis of MPP curve, fulfilling it through DSP digital control circuit.
Experiment 7	Integrate MPPT generator actuator, grid- connected inverter with wind turbine simulator
Grid-connected PMSG Wind Power Generation System	to establish circuit in simulation of integrated system and to proceed to full system verification in simulation.

Experiment 8	To learn the requirements of both frequency operation and reactive power by grid-connected
Low Voltage Ride	power to WTG and to understand the
Through (LVRT) of	requirement of adaptation by WTG to grid-
PMSG WTG	connected voltage. To learn the Low Voltage
System	Ride Through (LVRT) method of PMSG WTG
	and establish DSP digital control programming
	of LVRT and to verify LVRT function via
	experiment.

Experiment 1 – Three Phase SVPWM Inverter

Circuit Simulation

DC bus Voltage V_{bus} = 100V
$F_s = 20 \text{kHz}, V_{tri} = 10 V_{pp}$
$C_{Bus} = 300 uF, L = 1.02 uH, C = 10 uF$
$K_s = 0.3$ (AC current sensing factor)
$K_v = 1/60$ (AC voltage sensing factor)
$K_v = 1/50$ (DC voltage sensing factor)

The analogue circuit diagram based on the parameters above is as the following figure 1.1 shown:

PSIM File: PEK-520_2_Sim1_3P_SA_Inv(50Hz)_V11.1.5_V1.1

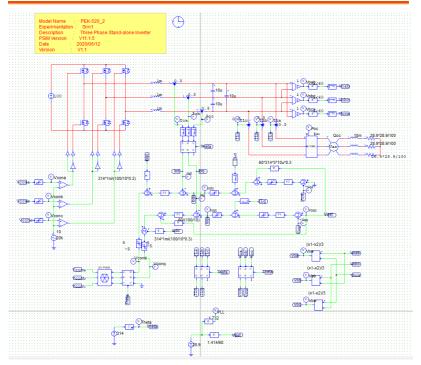


Figure 1.1 Experiment 1 PSIM analogue circuit diagram The simulation result is shown within the figure 1.2 and 1.3:

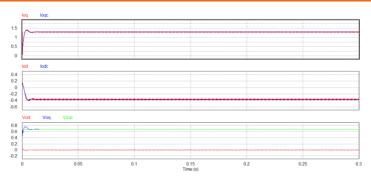


Figure 1.2 Experiment 1 analogue circuit simulation waveforms

Figure 1.3 Experiment 1 analogue circuit simulation waveforms

The digital circuit diagram based on the analogue circuit is shown as the figure 1.4:

PSIM File: PEK-520_2_Lab1_3P_SA_Inv(50Hz)_V11.1.5_V1.1

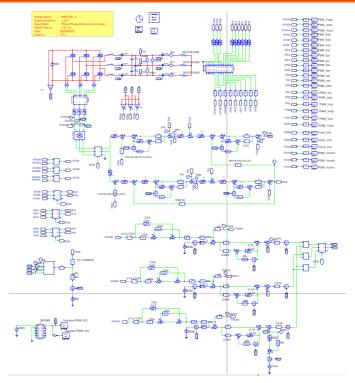


Figure 1.4 Experiment 1 digital circuit diagram

The simulation result is shown within the figure 1.5 and 1.6:

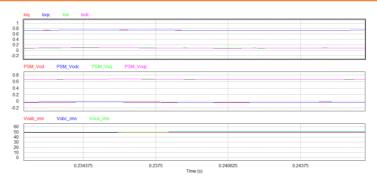


Figure 1.5 Experiment 1 digital circuit simulation waveforms

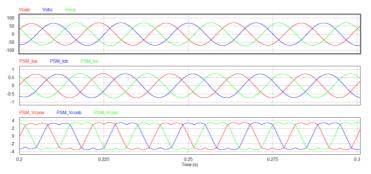


Figure 1.6 Experiment 1 digital circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

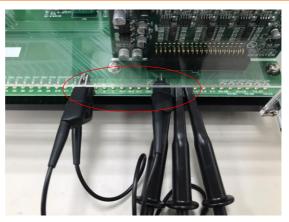
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E, PSW160-7.2 and GPL-500)
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 1.7. Please follow it to complete wiring.

Figure 1.7 Experiment 1 wiring figure

2. After wiring, make sure the PEK-520_2 switch is OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 1.8 shown, which means the DSP power is steadily normal.


Figure 1.8 DSP normal status with light on

3. Refer to the appendix B for burning procedure.

4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_2, respectively, and connect the GND of test leads to the GND of module as the figure 1.9 shown.

Figure 1.9 Oscilloscope test leads wiring

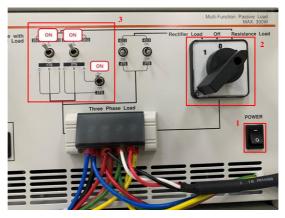

5. Click Set key to check set voltage and current values. Set voltage 100V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 1.10 shown.

Figure 1.10 The settings of PSW 160-7.2

6. As the figure 1.11 shown, follow the steps below for GPL-500 operation. Power on GPL-500 → Rotate the Three Phase Load knob to 2 (Resistance Load) → Set 1TS, 2TS and 3TS as ON, which indicates full-load mode.

Figure 1.11 The full-load setting of GPL-500

7. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_2.

The purpose of experiment

It is to observe fluctuation of three phase voltage of PEK-520_2 in accord with changes of load condition from the Lab1 experiment.

The Experiment Result

(1) Full Laod (10Ω)

The figure 1.12 shows that when GPL-500 is set as full-load mode, IO-A three phase current RMS value is 1.36V (2.852A in actual value), IO-B is 1.38A (2.894A in actual value), and IO-C is 1.37A (2.873A in actual value). The figure 1.13 shows that, in the mean time, VO-AB three phase voltage RMS value is 1.40V (48.780V in actual value), VO-BC is 1.43V (49.826V in actual value), and VO-CA is 1.41V (49.129V in actual value).

Figure 1.12 Three phase current waveform under full-load condition

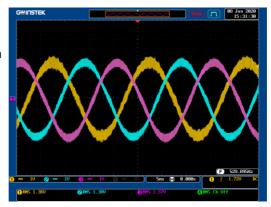
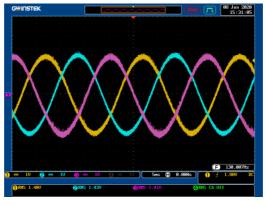
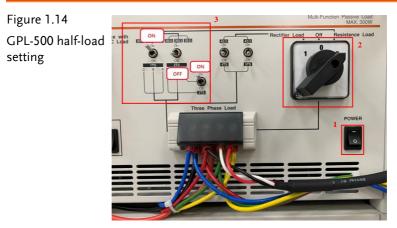
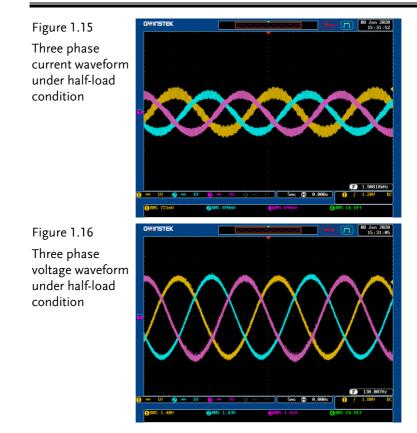




Figure 1.13 Three phase voltage waveform under full-load condition

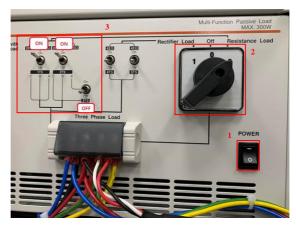
(2) Half Laod (20Ω)


As the figure 1.14 shown, follow the steps below for GPL-500 operation for half load. Power on GPL-500 \rightarrow Rotate the Three Phase Load knob to 2 (Resistance Load) \rightarrow Set 1TS and 3TS as ON, and 2TS as OFF, which indicates half-load mode.

The figure 1.15 shows that when GPL-500 is set as half-load mode, IO-A three phase current RMS value is 0.721A (1.512A in actual value), IO-B is 0.699A (1.466A in actual value), and IO-C is 0.694A (1.456A in actual value). The figure 1.16 shows that, in the mean time, VO-AB three phase voltage RMS value is 1.40V (48.780V in actual value), VO-BC is 1.43V (49.826V in actual value), and VO-CA is 1.41V (49.129V in actual value).

G^WINSTEK

Experiment 1 - Three Phase SVPWM Inverter



(3) Unbalanced Laod (A phase 20Ω , B and C phase 10Ω)

As the figure 1.17 shown, follow the steps below for GPL-500 operation for unbalanced load. Power on GPL-500 \rightarrow Rotate the Three Phase Load knob to 2 (Resistance Load) \rightarrow Set 1TS and 2TS as ON, and 3TS as OFF, which indicates unbalanced-load mode.

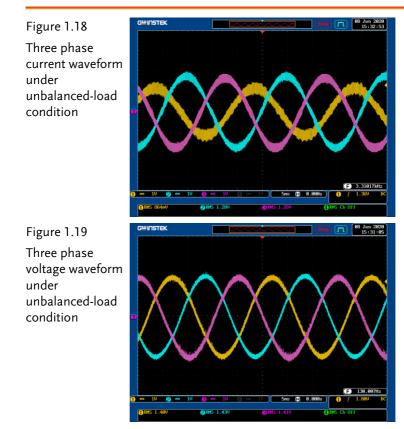

GWINSTEK

Figure 1.17 GPL-500 unbalanced-load setting

The figure 1.18 shows that when GPL-500 is set as unbalanced-load mode, IO-A three phase current RMS value is 0.864A (1.812A in actual value), IO-B is 1.28A (2.684A in actual value), and IO-C is 1.26A (2.643A in actual value). The figure 1.19 shows that, in the mean time, VO-AB three phase voltage RMS value is 1.40V (48.780V in actual value), VO-BC is 1.43V (49.826V in actual value), and VO-CA is 1.41V (49.129V in actual value).

G^WINSTEK

Per different load operations, refer to the table 0.1 for the sensing ratio followed by filling in the table 1.1 with result in order.

Table 1.1 Three phase output voltage current measured values under varied loads

under varied loads							
		IO-A	IO-B	IO-C	VO-AB	VO-BC	VO-CA
		(Arms)	(Arms)	(Arms)	(Vrms)	(Vrms)	(Vrms)
	Measured value	1.36A	1.38A	1.37A	1.4V	1.43V	1.41V
	Actual value	2.852A	2.894A	2.873A	48.780V	49.826V	49.129V
Half Load	Measured value	0.721A	0.699A	0.694A	1.4V	1.43V	1.41V

GWINSTEK

	Actual value	1.512A	1.466A	1.456A	48.780V	49.826V	49.129V
Unbal anced Load	Measured value	0.864A	1.28A	1.26A	1.4V	1.43V	1.41V
	Actual value	1.812A	2.648A	2.643A	48.780V	49.826V	49.129V

The conclusion

It has seen that, from the table 1.1, when load changes under the closed-circuit three phase inverter system, output current will fluctuate in accord with load changes, while output three phase voltage remains balanced.

Experiment 2 – Three Phase Grid-connected Inverter

Circuit Simulation

Inverter	DC bus Voltage V_{bus} = 100V
Specification	AC Source Voltage V_{LL} = 50 V_{rms}
	$F_s = 20 kHz$, $V_{tri} = 10 V_{pp}$
	$C_{Bus} = 400 uF$, L = 1.02 uH , C = 10 uF
	K_s = 0.3 (AC current sensing factor)
	$K_v = 1/60$ (AC voltage sensing factor)
	$K_v = 1/50$ (DC voltage sensing factor)

The analogue circuit diagram based on the parameters above is as the following figure 2.1 shown:

PSIM File: PEK-520_2_Sim2_3P_GC_Inv(50Hz)_V11.1.5_V1.1

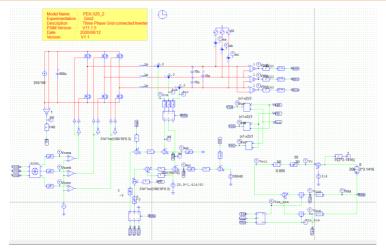


Figure 2.1 Experiment 2 PSIM analogue circuit diagram

The simulation result is shown within the figure 2.2:

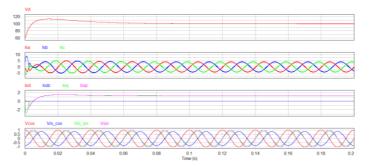


Figure 2.2 Experiment 2 analogue circuit simulation waveforms

The digital circuit diagram based on the analogue circuit is shown as the figure 2.3:

PSIM File: PEK-520_2_Lab2_3P_GC_Inv(50Hz)_V11.1.5_V1.1

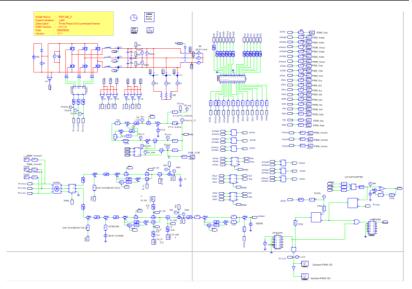


Figure 2.3 Experiment 2 PSIM digital circuit diagram

The simulation result is shown within the figure 2.4:

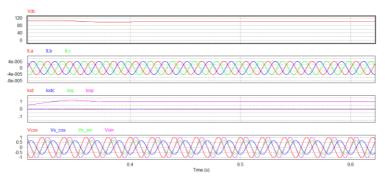


Figure 2.4 Experiment 2 digital circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows. Refer to user manuals of each device before operation:

- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1

• PTS-5000 * 1 (with GDS-2204E, PSW160-7.2, APS-300 and GPL-500)

• PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 2.5. Please follow it to complete wiring.

Figure 2.5 Experiment 2 wiring figure

2. After wiring, make sure the PEK-520_2 switch is OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 2.6 shown, which means the DSP power is steadily normal.

Figure 2.6 DSP normal status with light on

3. Refer to the appendix B for burning procedure.

GUINSTEK Experiment 2 – Three Phase Grid-connected Inverter

4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_2, respectively, and connect the GND of test leads to the GND of module as the figure 2.7 shown. The measurement points within module are common ground.

Figure 2.7 Oscilloscope test leads wiring

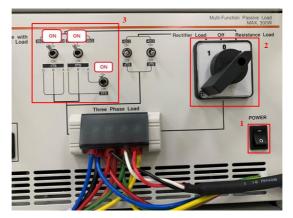
5. Click Set key to check set voltage and current values. Set voltage 110V with voltage scroll knob and current 1A with current scroll knob for PSW 160-7.2 as the figure 2.8 shown.

Figure 2.8 The setting of PSW 160-7.2

G^w**INSTEK**

6. As the figure 2.9 shown, power on APS-300 and set 50Hz for frequency, 3P4W for mode, 28.86V for output voltage.

Figure 2.9


The setting of APS-300

7. As the figure 2.10 shown, follow the steps below for GPL-500 operation. Power on GPL-500 \rightarrow Rotate the Three Phase Lord knob to Resistance Load \rightarrow Set 1TS, 2TS and 3TS as ON, which indicates full-load mode.

Figure 2.10

The full-load setting of GPL-500

8. After setting up, turn on PSW and APS-300 power output followed by powering on PEK-520_2.

The purpose of experiment

It is to observe power fluctuations between inverter and power grid under varied inverter output powers.

The experiment result

(1) Inverter Output Power 100W

On the condition of full-load, the power required by load is 250W, which is provided by inverter and power grid commonly. Hence, when output power provided by inverter is 98.9W, the insufficient power 151.1W will be provided by power grid instead. As the figure 2.11 and 2.12 shown, because APS-300 displays single-phase power, the three-phase power will be 153.9W.

Figure 2.11 PSW output power

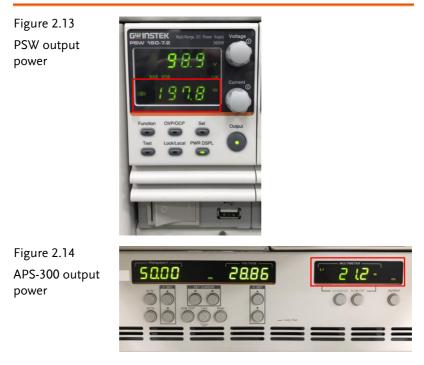


Figure 2.12 APS-300 output power

(2) Inverter Output Power 200W

Adjust output current to 2A via rotating the PSW current scroll knob. On the condition of full-load, when inverter provides 197.8W output power, the power required by load is 250W, which is provided by inverter and power grid commonly. The insufficient power 52.2W will be provided by power grid instead. As the figure 2.13 and 2.14 shown, because APS-300 displays single-phase power, the three-phase power will be 63.6W.

The Conclusion

From the experiment, it is evident that under the power gridconnected system the power from power grid, which is simulated by APS-300, will determine required power in accordance with fluctuation of system power in order to maintain the power balance of system.

Experiment 3 – Speed and Torque Control of PMSM

Circuit Simulation

The motor driver specification is as follows:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V pp (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The PMSM specification is as follows:

Rated Power: 400W Rated Speed: 3000 rpm Rated Current: 2.6A Transient Max. Current: 7.8A Counter EMF: 17.4 mV/min⁻¹ Electric Motor Resistance: 1.55 Ω Electric Motor Inductive Reactance: 6.71mH Motor Pole Number : 10 poles The analogue circuit diagram based on the parameters above is as the following figure 3.1 shown: PSIM File:

PEK-520_1_Sim3_Speed_Torque_PMSM_V11.1.5_V1.1



Figure 3.1 Experiment 3 - PSIM analogue circuit diagram The simulation result is shown as the figure 3.2:

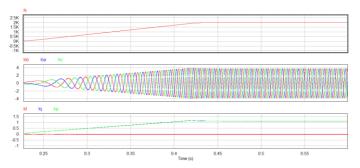


Figure 3.2 Experiment 3 analogue circuit simulation waveforms

The digital circuit diagram based on the analogue circuit is shown as the figure 3.3:

PSIM File: PEK-520_1_Lab3_Speed_Torque_PMSM_V11.1.5_V1.1

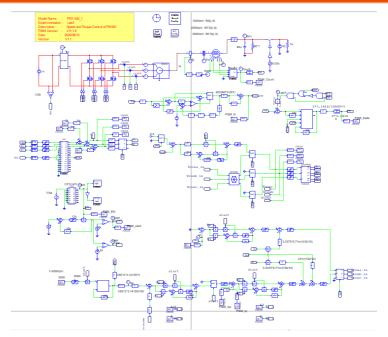


Figure 3.3 Experiment 3 PSIM digital circuit diagram

The simulation result is shown as the figure 3.4:

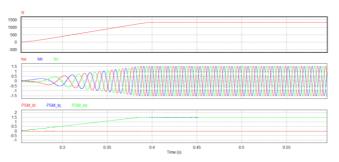


Figure 3.4 Experiment 3 digital circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E, PSW160-7.2 and GPL-500)
- Motor Module * 1
- Power Cord * 1, Programming Cord * 1 and Load Cord * 1
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 3.5. Please follow it to complete wiring.

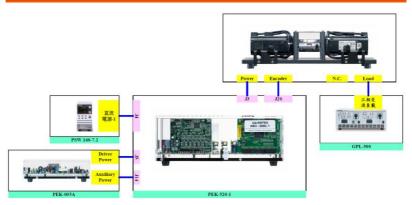


Figure 3.5 Experiment 3 wiring figure

2. After wiring, make sure the PEK-520_1 switch is OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 3.6 shown, which means the DSP power is steadily normal.

Figure 3.6 DSP normal status with light on

3. Refer to the appendix B for burning procedure and the appendix C for RS232 connection.

4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 3.7 shown. The measurement points within module are common ground.

Figure 3.7 Oscilloscope test leads wiring

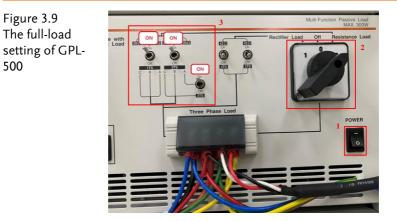

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 3.8 shown.

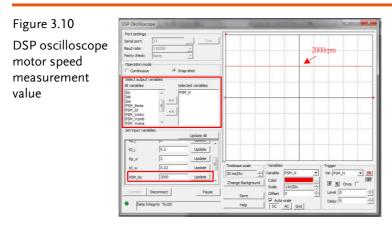
Figure 3.8 The setting of PSW 160-7.2

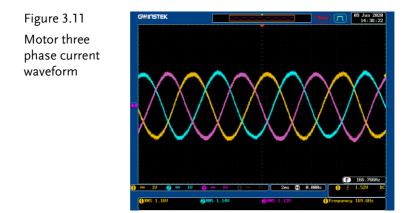
GUINSTEK Experiment 3 – Speed and Torque Control of PMSM

6. As the figure 3.9 shown, follow the steps below for GPL-500 operation. Power on GPL-500 → Rotate the Three Phase Lord knob to Resistance Load → Set 1TS, 2TS and 3TS as ON, which indicates full-load mode.

7. After setting up and turning on PSW power output, turn on the switch of PEK-520_1.

The purpose of experiment


It is to observe fluctuations of driver output current when motor speed changes.


The experiment result

(3) Motor speed 2000 rpm

Motor speed can be modified via input parameter "PSM_Nc" of DSP oscilloscope and the initial setting is 2000 rpm. Also, it is available to use "PSM_N" of DSP oscilloscope to observe the current motor speed. As the figure 3.10 shown, the current speed is 2000 rpm.

The figure 3.11 shows that, from the oscilloscope observation, IO-A three phase current RMS value is 1.16V (2.433A in actual value), IO-B is 1.14A (2.391A in actual value), and IO-C is 1.12A (2.349A in actual value) with frequency 166.76Hz.

(4) Motor speed 1000 rpm

After motor speed is modified from 2000rpm to 1000rpm via input parameter "PSM_Nc", click "Update" and the speed measurement (PSM_N) is in fact 1000rpm observed from DSP oscilloscope as the figure 3.12 shown.

The figure 3.13 shows that, from the oscilloscope observation, IO-A three phase current RMS value is 0.713A (1.495A in actual value), IO-B is 0.745A (1.563A in actual value), and IO-C is 0.756A (1.586A in actual value) with frequency 83.33Hz.

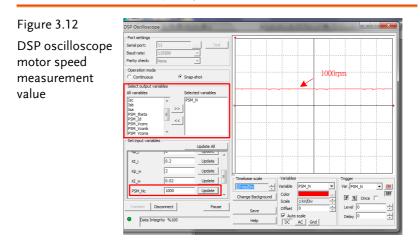
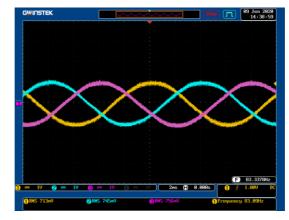



Figure 3.11 Motor three phase current waveform

Per different load operations, refer to the table 0.1 for the sensing ratio followed by filling in the table 3.1 with result in order.

Table 1.1 Three phase current measured values under varied motor

			speeds			
RPM		IO- IO- IO-		Frequency(Hz)		
		A(Arms)	B(Arms)	C(Arms)	r requeriey (r iz)	
2000rpm	Measured value	1.16A	1.14A	1.12A	—166.76Hz	
	Actual value	2.433A	2.391A	2.349A		
1000rpm	Measured value	0.713A	0.745A	0.756A	—83.33Hz	
	Actual value	1.495A	1.563A	1.586A		

The conclusion

It has seen that when motor speed increases, output current scale and frequency will increase accordingly. That is to say, motor speed is proportional to current scale and frequency.

Experiment 4 – Speed Control of PMSG

Circuit Simulation

The parameters of electric motor actuator:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V pp (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of generator actuator:

BUS Voltage $V_{bus} = 130V$ $F_s = 20 \text{kHz}, V_{tri} = 10V_{pp}$ (PWM) $C_{bus} = 940 \text{uF}$ $K_s = 0.3$ (Current sensing factor) $K_v = 1/50$ (Voltage sensing factor)

The parameters of permanent magnet synchronous motor:

Rated Power: 400W Rated Speed: 3000rpm Rated Current: 2.6A Transient Max. Current: 7.8A Counter emf: 17.4 mV/min⁻¹ Electric Motor Impedance: 1.55Ω

Electric Motor Reactance: 6.71mH

Rotor Inertia: 27.7 $u \text{ kg} \cdot m^2$

Mechanical Constant: 0.53 ms

Motor Pole Number: 10 poles

The wind turbine and generator analogue circuit diagrams based on the parameters above are as the following figures 4.1 and 4.2 shown: Wind Turbine PSIM File: PEK-520_1_Sim4_Torque_PMSM_V11.1.5_V1.1

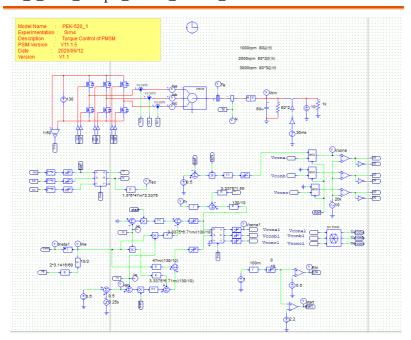


Figure 4.1 Experiment 4 Wind Turbine PSIM analogue circuit diagram

Generator PSIM File: PEK-520_2_Sim4_Speed_PMSG_V11.1.5_V1.1

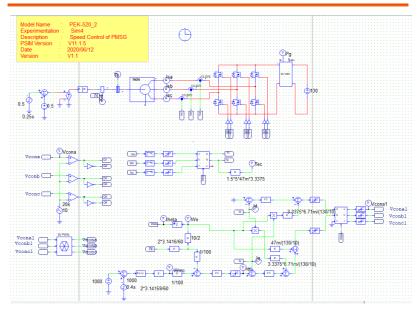


Figure 4.2 Experiment 4 Generator PSIM analogue circuit diagram The wind turbine simulation result is shown as the figure 4.3:

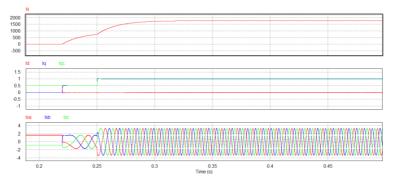


Figure 4.3 Experiment 4 Wind Turbine analogue circuit simulation waveforms

The generator simulation result is shown within the figure 4.4:

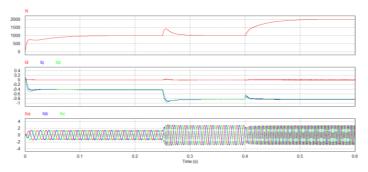


Figure 4.4 Generator analogue circuit simulation waveforms The wind turbine and generator digital circuit diagrams based on the analogue circuit are as the following figures 4.5 and 4.6 shown: Wind Turbine PSIM File: PEK-520_1_Lab4_Torque_PMSM_V11.15_V1.1

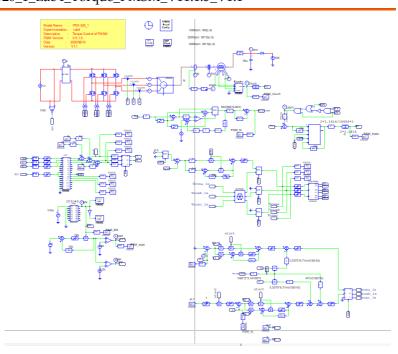


Figure 4.5 Experiment 4 Wind Turbine PSIM analogue circuit diagram

Generator PSIM File:

PEK-520_2_Lab4_Speed_PMSG_V11.1.5_V1.11

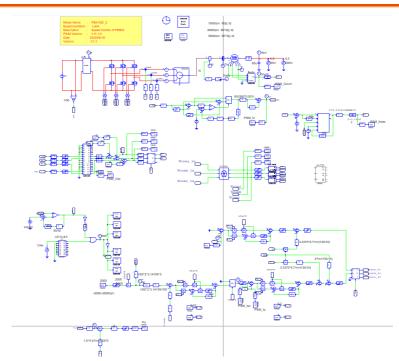


Figure 4.6 Experiment 4 Generator PSIM analogue circuit diagram The wind turbine simulation result is shown as the figure 4.7:

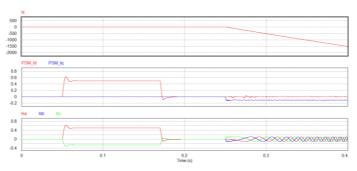


Figure 4.7 Experiment 4 Wind Turbine digital circuit simulation waveforms

The generator simulation result is shown as the figure 4.8:

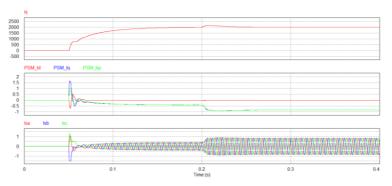


Figure 4.8 Experiment 4 Generator digital circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_1 * 1
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E and PSW160-7.2)
- Motor Module * 1
- Power Cord * 2
- Coding Cord * 2
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 4.9. Please follow it to complete wiring.

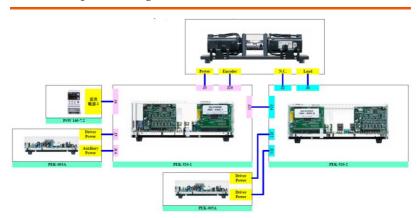


Figure 4.9 Experiment 4 wiring figure

2. After wiring, make sure the PEK-520_1 and PEK-520_2 switch are OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 4.10 shown, which means the DSP power is steadily normal.

Figure 4.10 DSP normal status with light on

- 3. Refer to the appendix B for burning procedure and appendix C for RS232 connection. Because both PEK-520_1 and PEK-520_2 are required to utilize RS232 connection, the 2 separate PSIM windows are necessary for connection with PEK individually.
- 4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 4.11 shown.

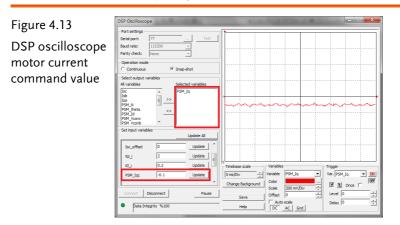
Figure 4.11 Oscilloscope test leads wiring

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 4.12 shown.

G≝INSTEK

Figure 4.12 The settings of PSW 160-7.2

6. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_1 followed by PEK-520_2.

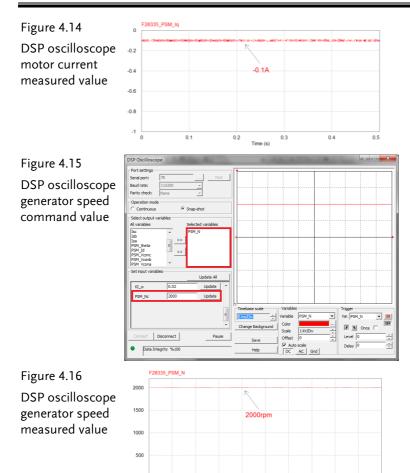

The purpose of experiment

This experiment contains the motor with generator system in which motor is torque control and torgue is changed by current command adjustment, while generator is speed control, observing inverter current amplitude and frequency fluctuation when torque and speed change.

The Experiment Result

(5) Generator speed 2000rpm; motor current command -0.1

When the default setting of motor (PEK-520_1) current command (PSM_Iqc) is -0.1 as the figure 4.13 shown, it is available to observe, from DSP oscilloscope, motor current (PSM_Iq) is -0.1A as the figure 4.14 shown. When the default command of of generator (PEK-520_2) speed (PSM_N) is 2000rpm as the figure 4.15, it is available to observe via DSP oscilloscope as the figure 4.16 shown. The figure 4.17 shows that, from the oscilloscope observation, IO-A three phase current RMS value is 0.233A (0.489A in actual value), IO-B is 0.239A (0.501A in actual value), and IO-C is 0.154A (0.323A in actual value) with frequency 166.7Hz.

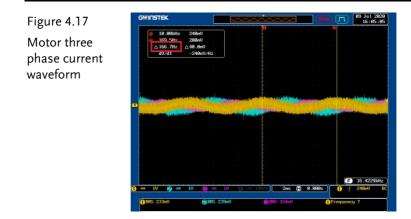

0.16

0.2

0.12

Time (s)

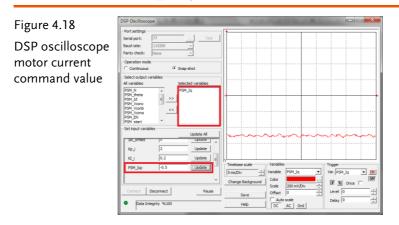
GWINSTEK

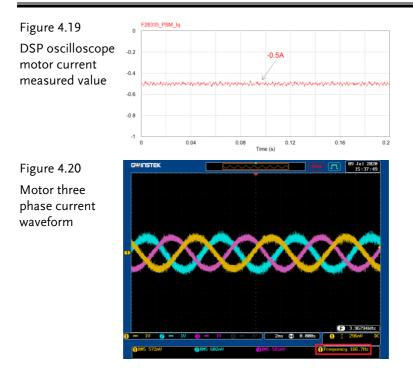


0

0

0.04

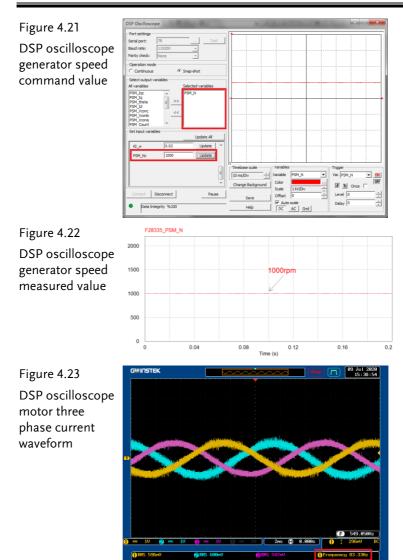

0.08


(6) Generator speed 2000rpm; motor current command -0.5

After motor current command (PSM_Iqc) is modified from -0.1 to -0.5 as the figure 4.18 shown, click "Update" and the motor current (PSM_Iq) is in fact -0.5A observed from DSP oscilloscope as the figure 4.19 shown.

The figure 4.20 shows that, from the oscilloscope observation, IO-A three phase current RMS value is 0.572A (1.200A in actual value), IO-B is 0.602A (1.263A in actual value), and IO-C is 0.581A (1.219A in actual value) with frequency 166.7Hz.

G^W INSTEK



(7) Generator speed 1000rpm; motor current command -0.5

After generator speed (PSM_Nc) is modified from 2000rpm to 1000rpm as the figure 4.21 shown, click "Update" and the generator speed (PSM_N) is in fact 1000rpm observed from DSP oscilloscope as the figure 4.22 shown.

The figure 4.23 shows that, from the oscilloscope observation, IO-A three phase current RMS value is 0.596A (1.25A in actual value), IO-B is 0.600A (1.258A in actual value), and IO-C is 0.547A (1.147A in actual value) with frequency 83.33Hz.

G^WINSTEK

Per different motor speeds and current commands, refer to the tables 0.1 and 0.2 for the sensing ratio followed by filling in the table 4.1 with result in order.

Table 4.1 Output three phase current measured values under varied motor speeds and current commands

		1					
Current Command	Motor Speed		IO- $\Lambda(\Lambda rmc)$	IO- B(Arms)	IO- C(Arms)	Frequency(Hz)	
Commanu	Speed		A(AIIIS)	D(AIIIIS)	C(AIIIS)		
-0.1A	2000rpm	Measured value	0.233A	0.239A	0.154A	-166.7Hz	
		Actual value	0.489A	0.510A	0.323A	-100.7 [12	
-0.5A	2000rpm	Measured value	0.572A	0.602A	0.581A	–166.7Hz	
		Actual value	1.200A	1.263A	1.219A		
-0.5A	1000rpm	Measured value	0.596A	0.600A	0.547A	-8 3.33Hz	
		Actual value	1.25A	1.258A	1.147A		

The conclusion

It has seen that when adjusting motor torque, the inverter output current amplitude changes accordingly. Also, when adjusting generator speed, the output current frequency fluctuates accordingly.

Experiment 5 –Wind Turbine Generator (WTG) Emulation

Circuit Simulation

The parameters of WTG actuator:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V _{pp} (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of generator actuator:

BUS Voltage V_{bus} = 130V F_s = 20kHz, V_{tri} = 10V pp (PWM) C_{bus} = 940uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of permanent magnet synchronous motor:

Rated Power: 400W Rated Speed: 3000rpm Rated Current: 2.6A Transient Max. Current: 7.8A

Counter emf: 17.4 mV/min⁻¹

Electric Motor Impedance: 1.55 Ω

Electric Motor Reactance: 6.71mH

Rotor Inertia: 27.7 $u \text{ kg} \cdot m^2$

Mechanical Constant: 0.53 ms

Motor Pole Number: 10 poles

The WTG analogue circuit diagram based on the parameters above is as the following figure 5.1 shown (generator utilizes Sim4 analogue program):

WTG PSIM File: PEK-520_1_Sim5_WTG_PMSM_V11.1.5_V1.1

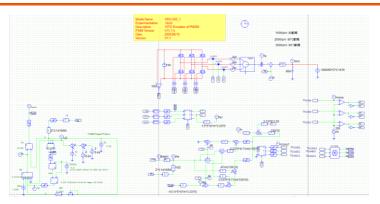


Figure 5.1 Experiment 5 PSIM analogue WTG circuit diagram The WTG simulation result is shown within the figure 5.2:

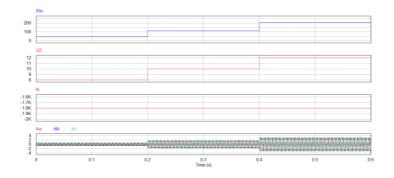


Figure 5.2 Experiment 5 Simulation waveform of analogue WTG circuit diagram

The WTG digital circuit diagram based on the analogue circuit diagram is as the following figure 5.3 shown (generator utilizes Lab4 digital program):

PSIM File: PEK-520_1_Lab5_WTG_PMSM_V11.1.5_V1.1

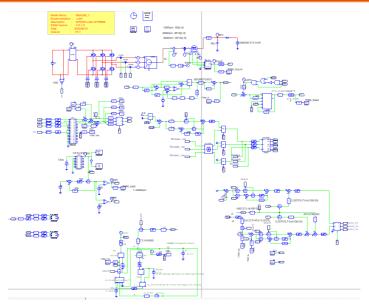


Figure 5.3 Experiment 5 PSIM digital WTG circuit diagram The WTG simulation result is shown as the figure 5.4:

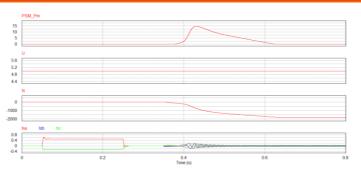


Figure 5.4 Experiment 5 digital WTG circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_1 * 1
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E and PSW160-7.2)
- Motor Module * 1
- Power Cord * 2
- Coding Cord * 2
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 5.5. Please follow it to complete wiring.

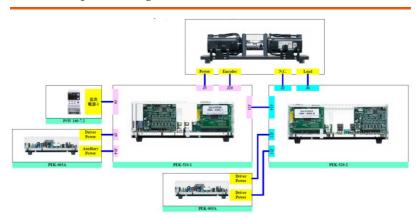


Figure 5.5 Experiment 5 wiring figure

2. After wiring, make sure the PEK-520_1 and PEK-520_2 switch are OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 5.6 shown, which means the DSP power is steadily normal.

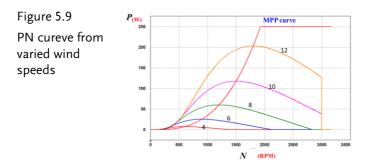
Figure 5.6 DSP normal status with light on

- 3. Refer to the appendix B for burning procedure and appendix C for RS232 connection. Because both PEK-520_1 and PEK-520_2 are required to utilize RS232 connection, the 2 separate PSIM windows are necessary for connection with PEK individually.
- 4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 5.7 shown.

Figure 5.7 Oscilloscope test leads wiring

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 5.8 shown.

G≝INSTEK


Figure 5.8 The settings of PSW 160-7.2

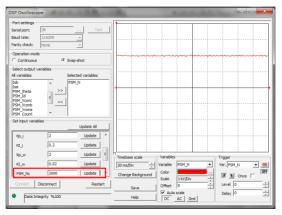
6. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_1 followed by PEK-520_2.

The purpose of experiment

Within the Lab5 experiment following the Lab4 experiment, the motor torque command is determined by wind speed and motor speed, by doing which the corresponding power speed curve (PN Curve) can be mapped out to simulate the pattern of WTG as the figure 5.9 shown. When WTG changes its speed, observe if output power of WTG is in accord with power curve output.

The Experiment Result

(8) Wind speed (U) 10; generator speed 2000rpm


After WTG (PEK-520_1) wind speed (U) is modified from 5 to 10, click "Update" as the figure 5.10 shown. And after generator (PEK-520_2) speed command (PSM_Nc) is 2000rpm as the figure 5.11 shown, it is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 102W as the figure 5.12 shown.

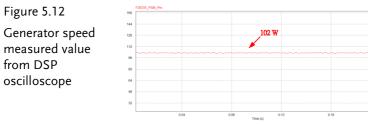
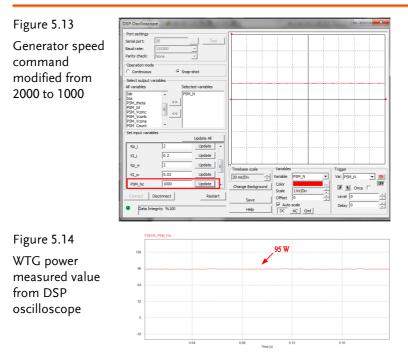

GWINSTEK

Figure 5.10 WTG wind speed command modified from 5 to 10

DSP Oscilloscope	
Port settings Serial port: 34	
Continuous C Snap-shot	
Select output variables All variables Selected variables	
PSM_N PSM_theta PSM_theta PSM_count PSM_Count PSM_10c PSM_10 PSM_10 PSM_10	
Set input variables Update All	
Isb_offset 0 Update	
Isc_offset 0 Update	
KI_ 0.2 Update	Timebase scale Variables Trigger
U 10 Update	Channe Backers and Color
Connect Disconnect Restart	Scale S0 V/Div - [3] E Once Save Offset 0 - - Level 0 -
Data Integrity %100	Help DC AC Gnd Delay 0

Figure 5.11 Generator speed command value



GUINSTEK Experiment 5 – Wind Turbine Generator (WTG) Emulation

(9) Wind speed (U) 10; generator speed 1000rpm

When wind speed (U) is maintained 10, adjust the generator speed command (PSM_Nc) from 2000rpm to 1000rpm followed by clicking "Update" as the figure 5.13 shown. It is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 95W as the figure 5.14 shown.

(10) Wind speed (U) 10; generator speed 1498rpm

When wind speed (U) is maintained 10, adjust the generator speed command (PSM_Nc) from 1000rpm to 1498rpm followed by clicking "Update" as the figure 5.15 shown. It is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 117W as the figure 5.16 shown.

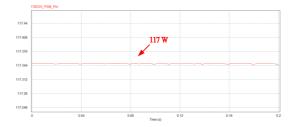

G≝INSTEK

Figure 5.15

Generator speed command modified from 1000 to 1498

DSP Oscilloscope		3
Port settings Test Serial port: 26 Test Baud rate: 115200 V V Parity check: None V V -Operation mode C Contruous C Snap-shot		
Al vanibles Selected variables Al vanibles Select august variables Select august variables Selected va		-
Set input variables Update All		-
Kp_j 2 Update KI_j 0.2 Update Kp_w 2 Update	r Translase scale v Variables v Triager	
KI_W 0.02 Update	20 ms/Div · Variable PSM_N · Var. PSM_N ·	
Connect Disconnect Restart	Change Background Scale 1 kV/Div # © Once Save Offset 0 - Level 0	-
Data Integrity %100	Help DC AC Gnd	-

Figure 5.16 WTG power measured value from DSP oscilloscope

Per different measured powers from varied speeds, fill in the table 5.1 with results in order and compare them with certain PN Curve.

Table 5.1 WTG power theory and actual data under varied speeds

Wind	Motor		WTG
Speed	Speed		Power(PSM_Pm
)
10	2000rpm	Measured value	102 W
-	Actual value	103 W	
		Measured	95 W
10	1000rpm	value	25 VV
		Actual value	94 W
		Measured	117 W
10	1498rpm	value	117 VV
		Actual value	117.3 W

The conclusion

It has seen that, from the table 5.1, when wind speed is 10, the WTG output power, via speed adjustment, is corresponding to the PN curve of the figure 5.9 and therefore WTG power is practically outputing in accordance with power curve.

Experiment 6 – Maximum Power Point Tracking of WTG

Circuit Simulation

The parameters of WTG actuator:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V pp (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of generator actuator:

BUS Voltage $V_{bus} = 130V$ $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (PWM) $C_{bus} = 940uF$ $K_s = 0.3$ (Current sensing factor) $K_v = 1/50$ (Voltage sensing factor)

The parameters of permanent synchronous motor:

Rated Power: 400W Rated Speed: 3000rpm Rated Current: 2.6A

GUINSTEK Experiment 6 – Maximum Power Point Tracking of WTG

Transient Max. Current: 7.8A Counter emf: 17.4 mV/min⁻¹ Electric Motor Impedance: 1.55 Ω Electric Motor Reactance: 6.71mH Rotor Inertia: 27.7u kg \cdot m² Mechanical Constant: 0.53 ms Motor Pole Number: 10 poles

The generator analogue circuit diagram based on the parameters above is as the following figure 6.1 shown (WTG utilizes Sim5 analogue circuit diagram program):

Generator PSIM File: PEK-520_2_Sim6_MPPT_PMSG_V11.1.5_V1.1

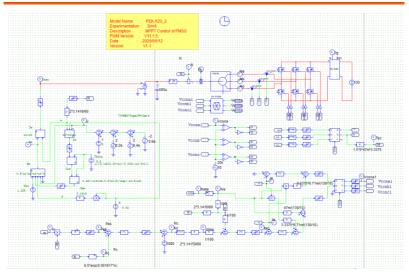


Figure 6.1 Experiment 6 PSIM generator analogue circuit diagram

The generator simulation result is shown within the figure 6.2:

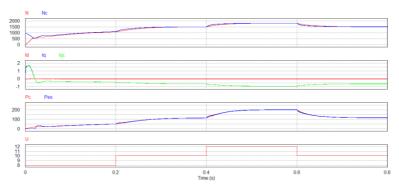


Figure 6.2 Experiment 6 analogue generator circuit simulation waveforms

The generator digital circuit diagram based on the analogue circuit diagram is as the following figure 6.3 shown (WTG utilizes Lab5 digital circuit program):

Generator PSIM File: PEK-520_2_Lab6_MPPT_PMSG_V11.1.5_V1.1

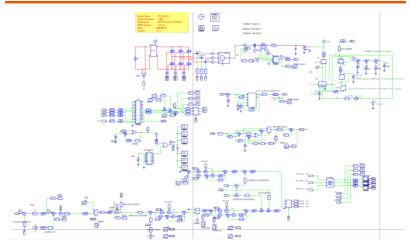


Figure 6.3 Experiment 6 PSIM generator digital circuit diagram The generator simulation result is shown as the figure 6.4:

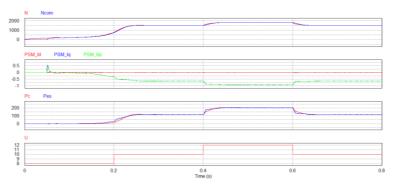


Figure 6.4 Experiment 6 digital generator circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_1 * 1
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E and PSW160-7.2)
- Motor Module * 1
- Power Cord * 2
- Coding Cord * 2
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 6.5. Please follow it to complete wiring.

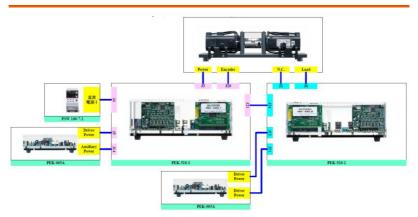


Figure 6.5 Experiment 6 wiring figure

2. After wiring, make sure the PEK-520_1 and PEK-520_2 switch are OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 6.6 shown, which means the DSP power is steadily normal.

Figure 6.6 DSP normal status with light on

- 3. Refer to the appendix B for burning procedure and appendix C for RS232 connection. Because both PEK-520_1 and PEK-520_2 are required to utilize RS232 connection, the 2 separate PSIM windows are necessary for connection with PEK individually.
- 4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 6.7 shown.

Figure 6.7 Oscilloscope test leads wiring

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 6.8 shown.

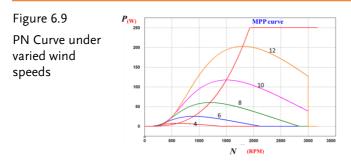
GUINSTEK Experiment 6 – Maximum Power Point Tracking of WTG

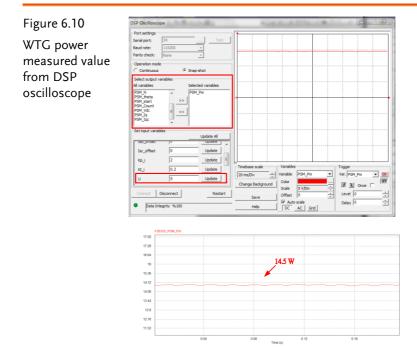
Figure 6.8 The settings of PSW 160-7.2

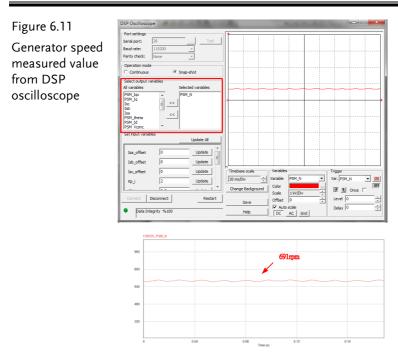
6. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_1 followed by PEK-520_2.

The purpose of experiment

When wind speed changes, power curve of WTG changes accordingly in which the maximum power point will vary as well. As the figure 6.9 shown, plot a line of maximum power point curve (MPP Curve) under varied wind speed, the maximum power with corresponding motor speed under different wind speeds is shown as the figure 6.1. Try to alter wind speed and observe if WTG output power is maintained within the maximum power point currently.




Table 6.1 Corresponding motor speeds relative to maximum power points under different wind speeds


Wind	Motor Speed	Power (P)
Speed (U)	(N)	
1	145	0.11
2	300	0.93
3	449	3.16
4	599	7.51
5	749	14.6
6	898	25.3
7	1048	40.2
8	1198	60
9	1348	85.5
10	1198	117.3
11	1647	156.2
12	1797	202.7

The Experiment Result

(11) Wind Speed (U) 5

When wind speed command (U) of WTG (PEK-520_1) is 5, it is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 14.5W as the figure 6.10 shown and generator (PEK-520_2) speed (PSM_N) is 691rpm as the figure 6.11 shown.

(12) Wind Speed (U) 8

When wind speed command (U) of WTG is adjusted from 5 to 8, it is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 60W as the figure 6.12 shown and generator speed (PSM_N) is 1161rpm as the figure 6.13 shown.

GUINSTEK Experiment 6 – Maximum Power Point Tracking of WTG

Figure 6.12 WTG power measured value from DSP oscilloscope

DSP Oscilloscope	
Port settings Serial port: 34 Test Baudrate: 115200 ✓ Parity chedic: None ✓	
Operation mode Continuous G Snap-shot	
Select output variables All variables Selected variables PSM_N PSM_theta PSM_theta	
PSM_theta >> PSM_tort >> PSM_tort >> PSM_tort >> PSM_tort >> PSM_tort = PSM_tort = PSM_tort =	
Set input variables Update All Update Television	
Isc_offset 0 Update	
Kp_i 2 Update =	Timebase scale
KI_i 0.2 Update	20 ms/Div + Variable PSM_Pm Var. PSM_Pm
Connect Disconnect Restart	Change Background Scale 20 V/Div
	Delay 0 -
Data Integrity %100	Help DC AC Grd



Figure 6.13 Port se Generator speed Serial port: Baud rate: Parity check: measured value from DSP oscilloscope PSM N Update All 6 Update Update Isb offset Isc_offset Update Var. PSM_N 20 ms/Di Variable Update Kp_ Color ch 🖪 😢 Once 🗆 1 kV/Div 0 Scale Disconnect Resta Level 0 ÷ Offset Auto Delay 0 Data Integrity %10 DC AC Gnd 1161rpm 640

Wind Speed (U) 10 (13)

When wind speed command (U) of WTG is adjusted from 8 to 10, click "Update" and it is available to observe, from DSP oscilloscope, that WTG power (PSM_Pm) is 117W as the figure 6.14 shown and generator speed (PSM_N) is 1474rpm as the figure 6.15 shown.

Figure 6.14	DSP Oscilloscope		
Figure 6.14 WTG power measured value from DSP oscilloscope	Port settings res Seni Jane: 11000	Timebase scale	
	Connect Disconnect Restart	Save Offset 0 - Level 0	

GUINSTEK Experiment 6 – Maximum Power Point Tracking of WTG

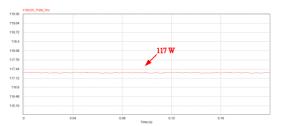
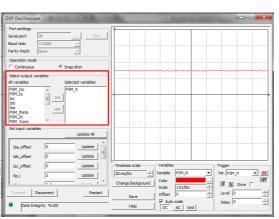



Figure 6.15 Generator speed measured value from DSP oscilloscope

Per different wind speeds, fill in the table 6.2 with results in order.

Wind		Motor	WTG Power
Speed		Speed	(PSM_Pm)
5	Measured value	691rpm	14.5 W
	Actual value	749rpm	14.6 W
8	Measured value	1161rpm	60 W
Act	Actual value	1198rpm	60 W
10	Measured value	1474rpm	117 W
	Actual value	1498rpm	117.3 W

Table 6.2 WTG power measured values under varied wind speeds

The conclusion

It has seen that when wind speed changes, adjust generator motor speed, via maximum power point tracking control, to achieve the maximum power point of wind speed currently.

Experiment 7 – PMSG Wind Power Generation System)

Circuit Simulation

The parameters of WTG actuator:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V _{pp} (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of generator actuator:

BUS Voltage V_{bus} = 100V F_s = 20kHz, V_{tri} = 10V _{pp} (PWM) C_{bus} = 940uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The parameters of grid-connected inverter:

BUS Voltage $V_{bus} = 100V$ AC Source Voltage $V_{LL} = 50V_{rms}$ $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (PWM)

- $C_d = 940 uF$, L = 1.02 mH, C = 10 uF
- $K_s = 0.3$ (Current sensing factor)
- $K_v = 1/60$ (AC Voltage sensing factor)
- $K_v = 1/50$ (DC Voltage sensing factor)

The parameters of permanent magnet synchronous motor:

Rated Power: 400W Rated Speed: 3000rpm Rated Current: 2.6A Transient Max. Current: 7.8A Counter emf: 17.4 mV/min⁻¹ Electric Motor Impedance: 1.55 Ω Electric Motor Reactance: 6.71mH Rotor Inertia: 27.7u kg \cdot m² Mechanical Constant: 0.53 ms Motor Pole Number: 10 poles

The generator analogue circuit diagram based on the parameters above is as the following figure 7.1 shown (WTG utilizes Sim5 analogue circuit program): Generator PSIM File: PEK-520_2_Sim7_3P_MPPT_GC_Inv(50Hz)_V11.1.5_V1.1

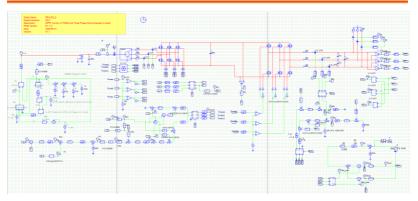


Figure 7.1 Experiment 7 PSIM analogue generator circuit diagram

The generator simulation result is shown within the figure 7.2:

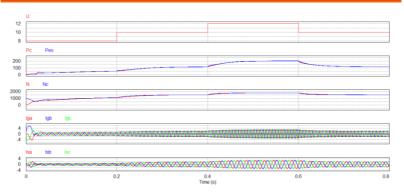


Figure 7.2 Experiment 7 analogue generator circuit simulation waveforms

The digital generator circuit diagram based on the analogue circuit diagram is as the following figure 7.3 shown: Generator PSIM File: PEK-520_2_Lab7_3P_MPPT_GC_Inv(50Hz)_V11.1.5_V1.1

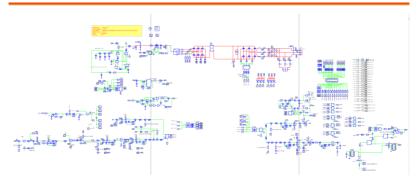


Figure 7.3 Experiment 7 PSIM digital generator circuit diagram

The generator simulation result is shown as the figure 7.4:

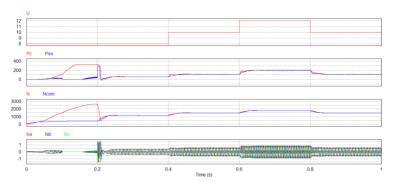


Figure 7.4 Experiment 7 digital generator circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_1 * 1
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1

• PTS-5000 * 1 (with GDS-2204E, PSW160-7.2, GPL-500 and APS-300)

- Motor Module * 1
- Power Cord * 2
- Coding Cord * 2
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 7.5. Please follow it to complete wiring.

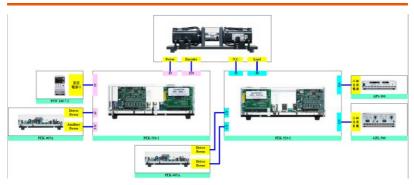


Figure 7.5 Experiment 7 wiring figure

2. After wiring, make sure the PEK-520_1 and PEK-520_2 switch are OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 7.6 shown, which means the DSP power is steadily normal.

Figure 7.6 DSP normal status with light on

GUINSTEK Experiment 7 – PMSG Wind Power Generation System)

- 3. Refer to the appendix B for burning procedure and appendix C for RS232 connection. Because both PEK-520_1 and PEK-520_2 are required to utilize RS232 connection, the 2 separate PSIM windows are necessary for connection with PEK individually.
- 4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 7.77 shown.

Figure 7.7 Oscilloscope test leads wiring

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 7.8 shown.

Figure 7.8 The settings of PSW 160-7.2

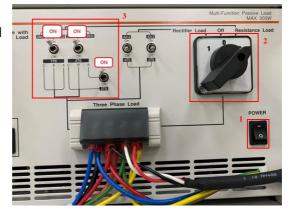
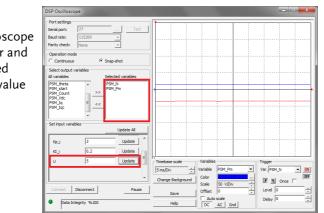

6. As the figure 7.9 shown, power on APS-300 and set 50Hz for frequency, 3P4W for mode, 28.86V for output voltage.

Figure 7.9 APS-300 setting

 Power on GPL-500 → Rotate the Three Phase Load knob to 2 (Resistance Load) → Set 1TS, 2TS and 3TS as ON, which indicates full-load mode as the figure 7.10 shown.

Figure 7.10 GPL-500 full-load setting

8. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_1 followed by PEK-520_2.


The purpose of experiment

Observe power changes between inverter and grid power when WTG output power changes due to wind speed flucturations.

The experiment result

(14) Wind speed (U) 5

When the default setting of WTG (PEK-520_1) wind speed command (U) is 5, it is available to observe, from DSP oscilloscope, WTF power (PSM_Pm) is 15W and motor speed (PSM_N) is -689rpm as the figure 7.11 shown. In the meantime, it is available to observe that, via DSP oscilloscope, generator (PEK-520_2) power (PSM_Po) is 12W and motor speed (PSM_N) is 694 rpm as the figure 7.12 shown. The required power, when load is full-load, is 250W and the insufficient 238W power will be provided by grid power (APS-300). Since APS-300 displays single-phase power, the three-phase power will be 237.9W as the figure 7.13 shown.

Figure 7.11

DSP oscilloscope WTG power and motor speed measured value

GUINSTEK Experiment 7 – PMSG Wind Power Generation System)

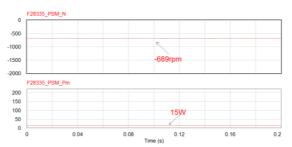
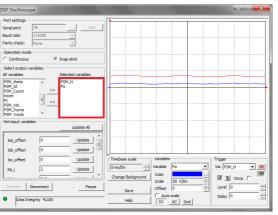



Figure 7.12 DSP oscilloscope generator power and motor speed measured value

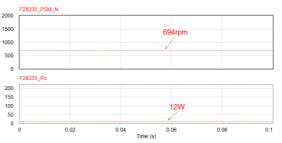
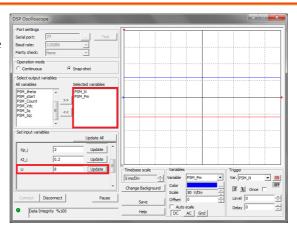


Figure 7.13 APS-300 output power


(15) Wind speed (U) 8

Adjust the wind speed command from 5 to 8 via DSP oscilloscope of WTG and it is available to observe that WTG power (PSM_Pm) is 60W and motor speed (PSM_N) is -1160 rpm as the figure 7.14 shown. The generator power (PSM_Po) will be 56W and motor speed (PSM_N) will be 1153 rpm as the figure 7.15 shown.

The required power, when load is full-load, is 250W and the insufficient 194W power will be provided by grid power (APS-300). Since APS-300 displays single-phase power, the three-phase power will be 201.6W as the figure 7.16 shown.

GUINSTEK Experiment 7 – PMSG Wind Power Generation System)

Figure 7.14 DSP oscilloscope WTG power and motor speed measured value

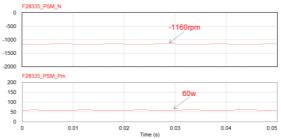
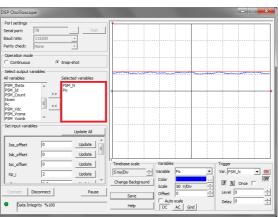
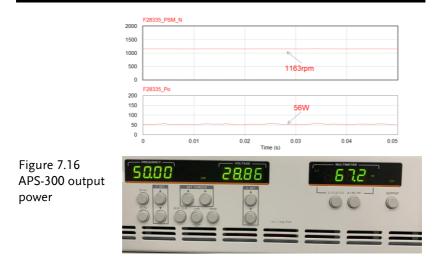
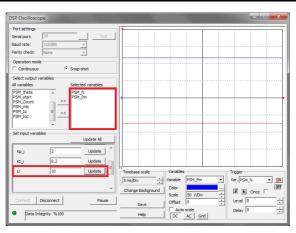




Figure 7.15 DSP oscilloscope generator power and motor speed measured value


(16) Wind speed (U) 10

Adjust the wind speed command from 8 to 10 via DSP oscilloscope of WTG and it is available to observe that WTG power (PSM_Pm) is 117W and motor speed (PSM_N) is -1462 rpm as the figure 7.17 shown. The generator power (PSM_Po) will be 109W and motor speed (PSM_N) will be 1462 rpm as the figure 7.18 shown.

The required power, when load is full-load, is 250W and the insufficient 141W power will be provided by grid power (APS-300). Since APS-300 displays single-phase power, the three-phase power will be 158.7W as the figure 7.19 shown.

GUINSTEK Experiment 7 – PMSG Wind Power Generation System)

Figure 7.17 DSP oscilloscope WTG power and motor speed measured value

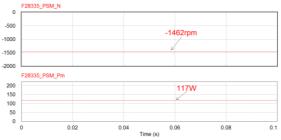
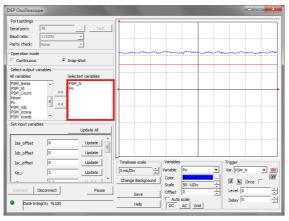



Figure 7.18 DSP oscilloscope generator power and motor speed measured value

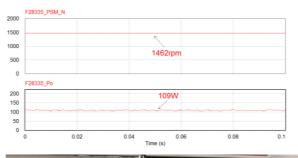


Figure 7.19 APS-300 output power

Fill in the table 7.1 with results in order.

Table 7.1 The power fluctuations of generator and grid power under varied wind speeds

		- F	
Generator motor speed (rpm)	Generator power(W)	Power of grid power(W)	l Power of load(W)
694	12	237.9	250
1163	56	201.6	250
1462	109	158.7	250
	motor speed (rpm) 694 1163	motor speed (rpm) power(W) 694 12 1163 56	motor speed (rpm)power(W)power(W)69412237.9116356201.6

The conclusion

It has seen that, from the experiment, the power of power grid (simulation based on APS-300) regulates required power in accordance with varied powers of generator under the gridconnected system to maintain power balance of system.

Experiment 8 – Low Voltage Ride Through (LVRT) of PMSG WTG System

Circuit Simulation

The WTG actuator specification is as follows:

DC Voltage V_d = 130V F_s = 20kHz, V_{tri} = 10V pp (PWM) C_b = 330uF K_s = 0.3 (Current sensing factor) K_v = 1/50 (Voltage sensing factor)

The generator actuator specification is as follows:

BUS Voltage $V_{bus} = 130V$ $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (PWM) $C_{bus} = 940uF$ $K_s = 0.3$ (Current sensing factor) $K_v = 1/50$ (Voltage sensing factor)

The grid-connected inverter specification is as follows:

BUS Voltage $V_{bus} = 100V$ AC Source Voltage $V_{LL} = 50V_{rms}$ $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (PWM)

GUINSTEK Experiment 8 – Low Voltage Ride Through (LVRT) of PMSG WTG Sy

 $C_{d} = 940 \text{uF}, \text{L} = 1.02 \text{mH}, \text{C} = 10 \text{uF}$ $K_{s} = 0.3 \text{ (Current sensing factor)}$ $K_{v} = 1/60 \text{ (AC Voltage sensing factor)}$ $K_{v} = 1/50 \text{ (DC Voltage sensing factor)}$

The PMSM specification is as follows:

Rated Power: 400W Rated Speed: 3000rpm Rated Current: 2.6A Transient Max. Current: 7.8A Counter emf: 17.4 mV/min⁻¹ Electric Motor Impedance: 1.55 Ω Electric Motor Reactance: 6.71mH Rotor Inertia: 27.7u kg \cdot m² Mechanical Constant: 0.53 ms Motor Pole Number: 10 poles

The generator analogue circuit diagrams based on the parameters above are as the following figure 8.1 shown (WTG utilizes Sim5 analogue circuit program instead): Generator PSIM File: PEK-520_2_Sim8_3P_MPPT_GC_Inv_LVRT(50Hz)_V11.1.5_V1.1

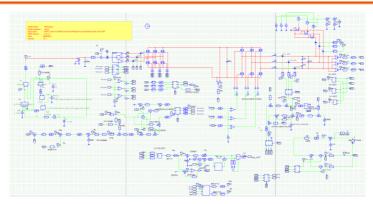


Figure 8.1 Experiment 8 PSIM analogue generator circuit diagram

The generator simulation result is shown within the figure 8.1:

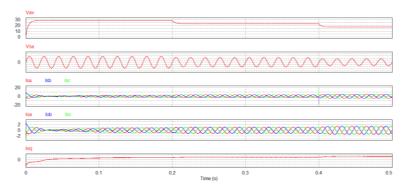


Figure 8.2 Experiment 8 analogue generator circuit simulation waveforms

The digital generator circuit diagram based on the analogue circuit is shown as the figure 8.3:

PSIM File: PEK-

520_2_Lab8_3P_MPPT_GC_Inv_LVRT(50Hz)_V11.1.5_V1.1

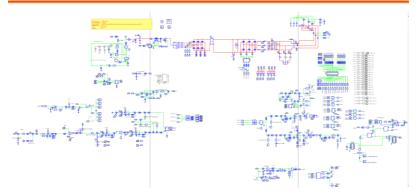


Figure 8.3 Experiment 8 PSIM digital generator circuit diagram

The generator simulation result is shown within the figure 8.4:

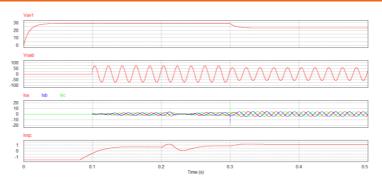


Figure 8.4 Experiment 8 digital generator circuit simulation waveforms

After confirming simulation, the corresponding C Code will be generated automatically via "Generate Code" of "Simulate".

Experiment Devices

The required devices for experiment are as follows:

- PEK-520_1 * 1
- PEK-520_2 * 1
- PEK-005A * 1
- PEK-006 * 1
- PTS-5000 * 1 (with GDS-2204E, PSW160-7.2, GPL-500 and APS-300)
- Motor Module * 1
- Power Cord * 2
- Coding Cord * 2
- PC * 1

Experiment Procedure

1. The experiment wiring is shown as the figure 8.5. Please follow it to complete wiring.

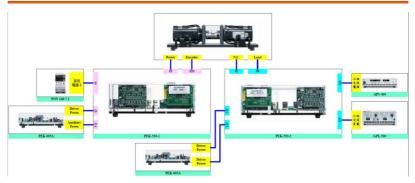


Figure 8.5 Experiment 8 wiring figure

2. After wiring, make sure the PEK-520_1 and PEK-520_2 switch are OFF followed by turning the PEK-005A switch ON. The DSP red indicator lights on as the figure 8.6 shown, which means the DSP power is steadily normal.

Figure 8.6 DSP normal status with light on

GUINSTEK Experiment 8 – Low Voltage Ride Through (LVRT) of PMSG WTG Sy

- 3. Refer to the appendix B for burning procedure and appendix C for RS232 connection. Because both PEK-520_1 and PEK-520_2 are required to utilize RS232 connection, the 2 separate PSIM windows are necessary for connection with PEK individually.
- 4. Connect the test leads of oscilloscope to IO-A, IO-B and IO-C of PEK-520_1, respectively, and connect the GND of test leads to the GND of module as the figure 8.7 shown.

Figure 8.7 Oscilloscope test leads wiring

5. Click Set key to check set voltage and current values. Set voltage 130V with voltage scroll knob and current 3A with current scroll knob for PSW 160-7.2 as the figure 8.8 shown.

Figure 8.8 The settings of PSW 160-7.2

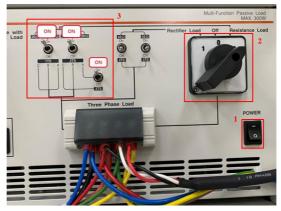
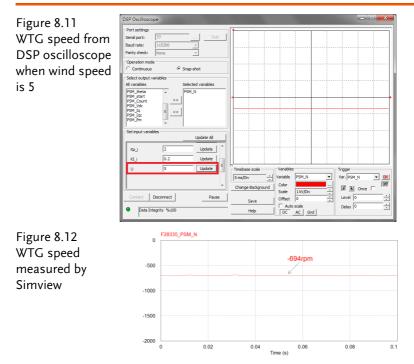

6. As the figure 8.9 shown, power on APS-300 and set 50Hz for frequency, 3P4W for mode, 28.86V for output voltage.

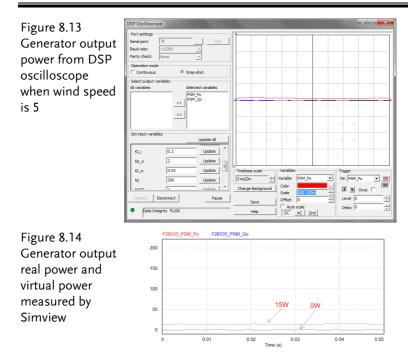
Figure 8.9 APS-300 setting

 Power on GPL-500 → Rotate the Three Phase Load knob to 2 (Resistance Load) → Set 1TS, 2TS and 3TS as ON, which indicates full-load mode as the figure 8.10 shown.

Figure 8.10 GPL-500 full-load setting

8. After setting up and turning on PSW power output, finally turn on the switch of PEK-520_1 followed by PEK-520_2.

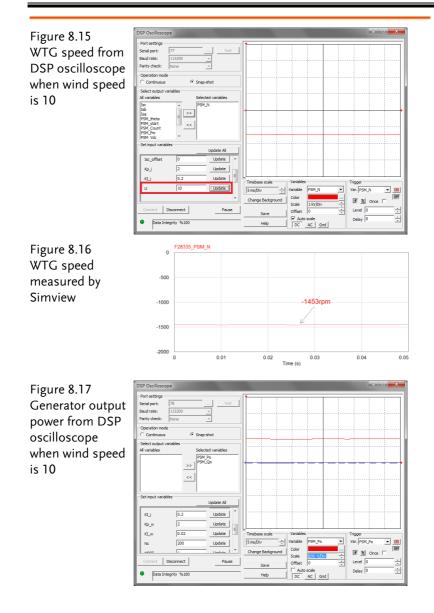

The purpose of experiment

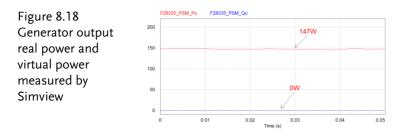

If grid power voltage is dropping when wind generator system is running, inverter is required to enter the LVRT (Low Voltage Ride Through) mode in order to maintain gird power voltage. Also, we are going to observe output power fluctuation of inverter when grid power voltage is dropping.

The Experiment Result

(17) Wind speed (U) 5; grid power voltage 28.86V

Wind speed command (U) of WTG (PEK-520_1) is 5 by default, and the speed of WTG is -694rpm as the figures 8.11 and 8.12 shown. Also, it is available to observe that, via another DSP oscilloscope, generator (PEK-520_2) output power (PSM_Po) is 15W and PSM_Qo is 0W as the figures 8.13 and 8.14 shown.

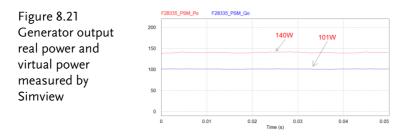




(18) Wind speed (U) 10; grid power voltage 28.86V

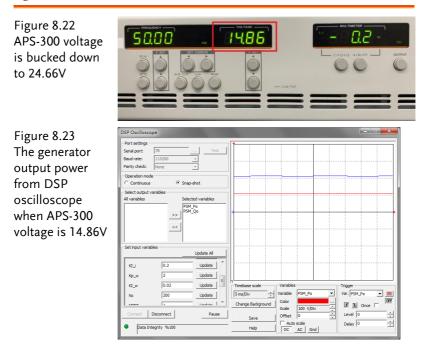
Wind speed command (U) of WTG DSP oscilloscope is adjusted from 5 to 10, and the speed of WTG is -1453rpm as the figures 8.15 and 8.16 shown. Also, it is available to observe that, via another DSP oscilloscope, generator output power (PSM_Po) is 147W and PSM_Qo is 0W as the figures 8.17 and 8.18 shown.

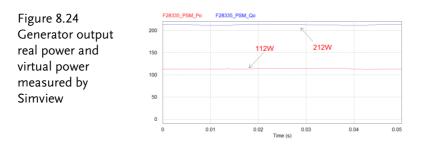
GUINSTEK Experiment 8 – Low Voltage Ride Through (LVRT) of PMSG WTG Sy



(19) Wind speed (U) 10; grid power voltage 24.66V

Wind speed command (U) is 10, and the grid power voltage is bucked down to 24.66V as the figures 8.19 shown. Also, it is available to observe that, via another DSP oscilloscope of generator, output power (PSM_Po) is 140W and PSM_Qo is 101W as the figures 8.20 and 8.21 shown.


Figure 8.19 APS-300 voltage is bucked down to 24.66V	
Figure 8.20	DSP Oscilloscope
•	Port settings
The generator	Serial port: 78 Test
output power	Parity check: None v
	Operation mode
from DSP	Continuous C Snap-shot
oscilloscope	All variables Selected variables
•	PSM.Po >> I PSM.Qo
when APS-300	
voltage is 24.66V	<u>«</u>
0	Set input variables
	Update All
	Kīj 0.2 Update
	Kp_w 2 Update Transe scale Visibles
	Kd_w 0.02 Update Timebase scale Variable Trigger Nc 200 Update 5 ms/Div \$Variable Var. PSM. Po Var.
	Channe Background Color Final a DEF
	Connect Disconnect Pause Source Offset 0 - Level 0 -
	Delay 0 Help Delay 0 C


GUINSTEK Experiment 8 – Low Voltage Ride Through (LVRT) of PMSG WTG Sy

(20) Wind speed (U) 10; grid power voltage 14.86V

Wind speed command (U) is 10, and the grid power voltage is bucked down to 14.86V as the figures 8.22 shown. Also, it is available to observe that, via another DSP oscilloscope of generator, output power (PSM_Po) is 112W and PSM_Qo is 212W as the figures 8.22 and 8.23 shown.

(21) Wind speed (U) 10; grid power voltage 13V

Wind speed command (U) is 10, and the grid power voltage is bucked down to 13V as the figures 8.25 shown. Also, it is available to observe that, via another DSP oscilloscope of generator, output power (PSM_Po) is 0W and PSM_Qo is 0W as the figures 8.26 shown.

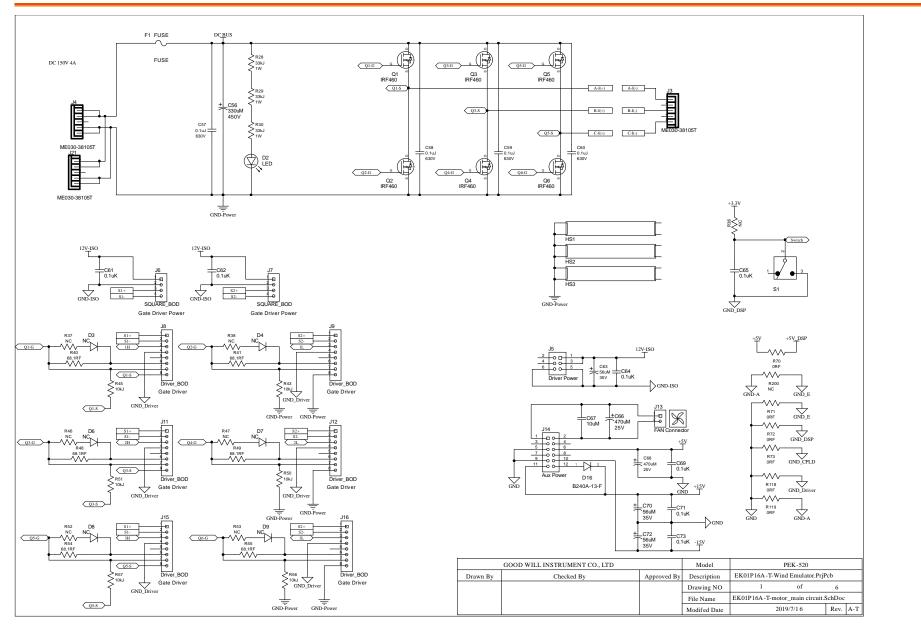
Figure 8.25 APS-300 voltage is bucked down to 13V			
Figure 8.26 The generator output power from DSP oscilloscope when APS-300 voltage is 13V	DSP Oscilloscope Part settings Senia port: 13300 Party check: Variation Party check: Variation Continuous Continuous Continuous Selected variables Al variables Selected variables </td <td>Timbase scale Simplow - Variables Simplow - Variables Dange Background Scale Dange Background Scale Dange Dackground Scale Data scale Data s</td> <td>Level 0 -</td>	Timbase scale Simplow - Variables Simplow - Variables Dange Background Scale Dange Background Scale Dange Dackground Scale Data scale Data s	Level 0 -

Fill in the table 8.1 with the power by generator under the above several conditions.

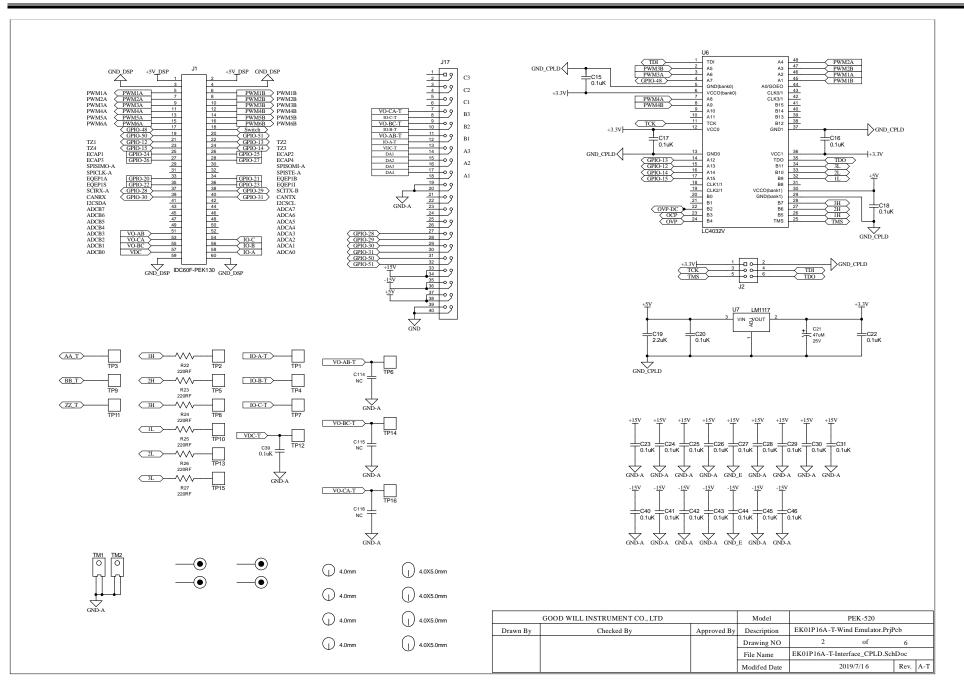
Win	d Grid Power	Generator Re	eal Generator
Spee	ed Voltage (V)	Power(W)	Reactive Power
			(W)
5	28.86	15	0
	28.86	147	0
8	24.66	140	101
	14.86	112	212
	13	0	0

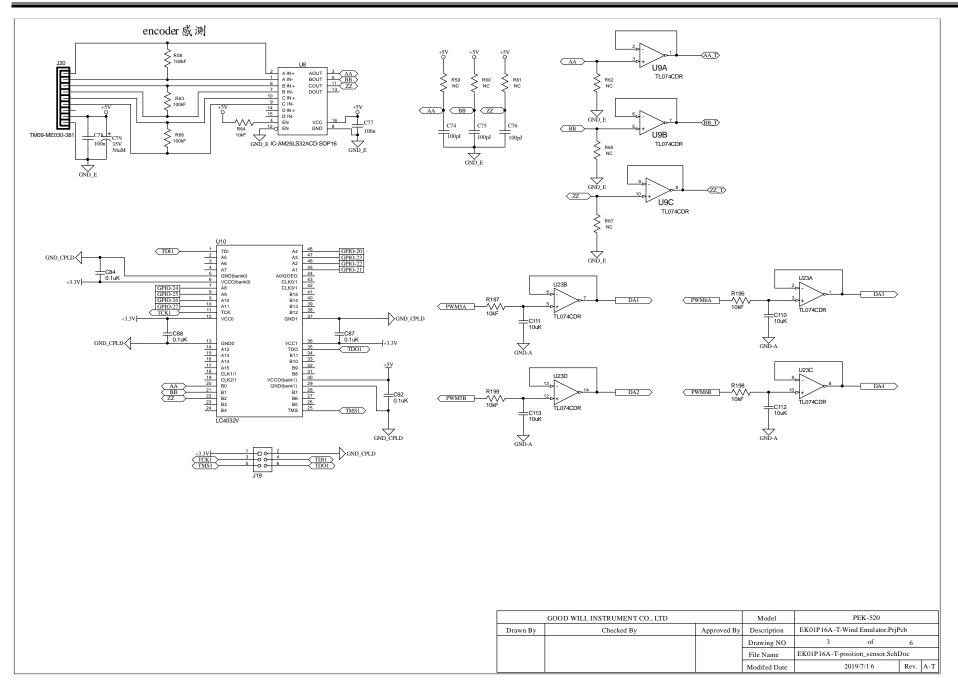
Table 8.1 WTG output power under varied grid power voltage

The conclusion

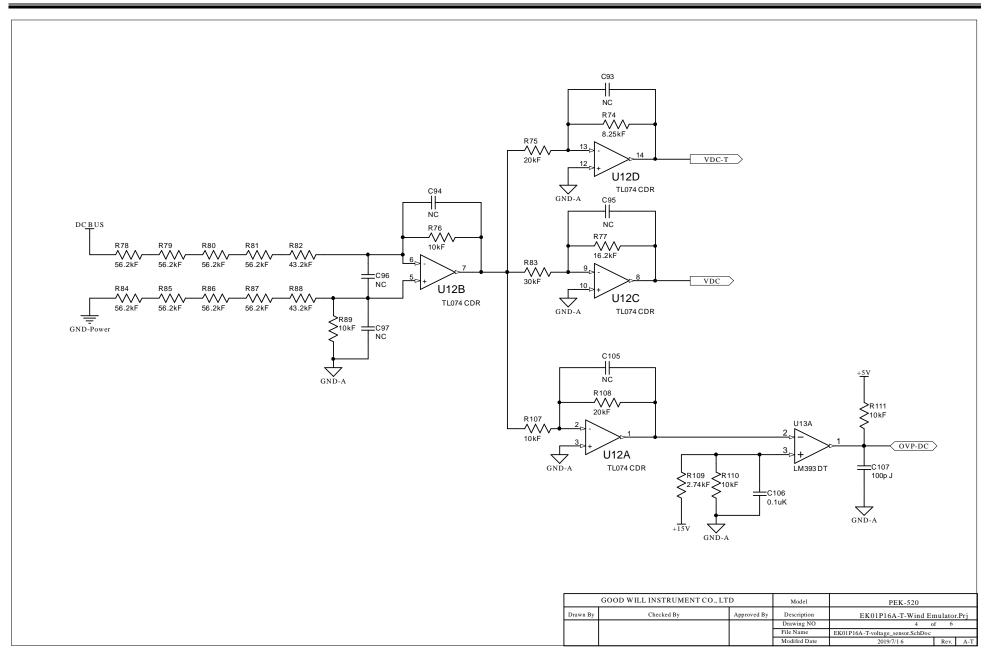

From the table 8.1, it is observed that within the power gridconnected system, when grid power voltage keeps lowering down to 24.7V, the inverter enters LVRT mode and provides reactive power in the meantime. In accord with voltage dropping down to 13V, the inverter trips and the system shuts down.

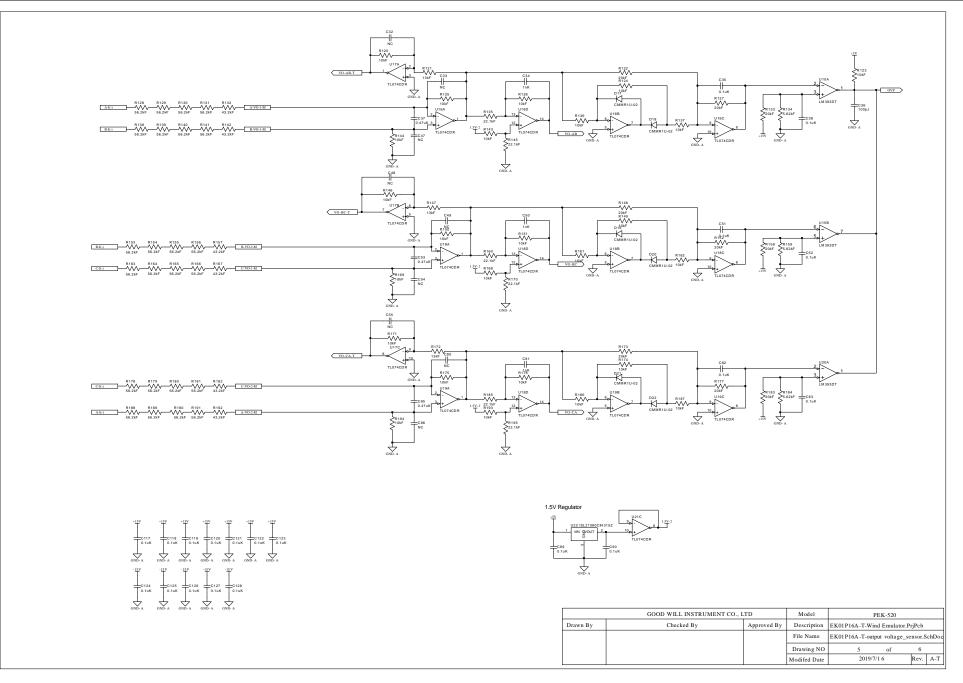
Appendix A – PEK-520

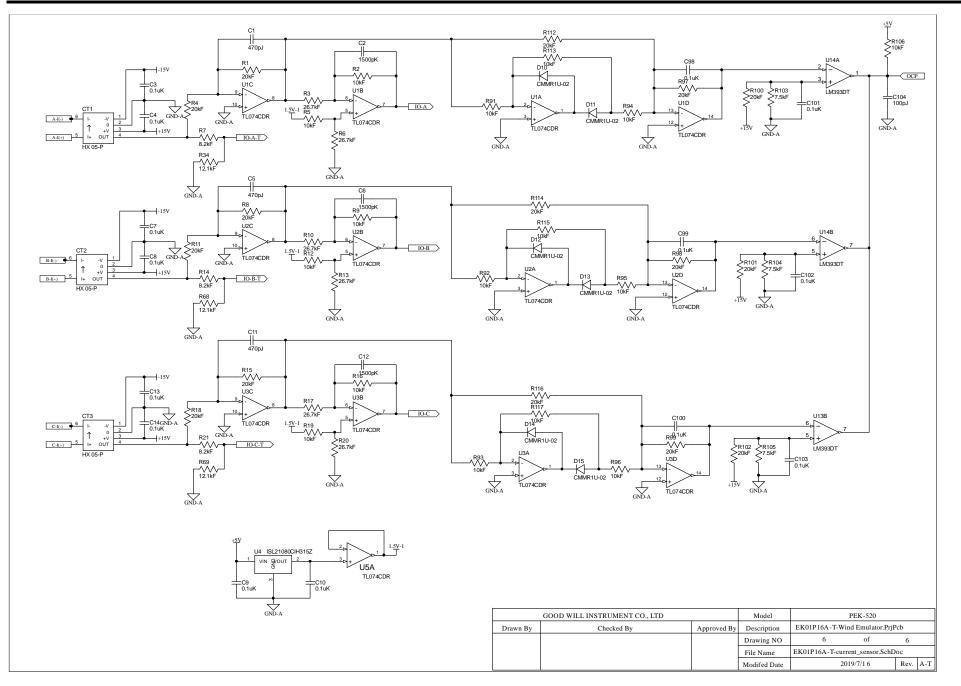

Circuit Diagram

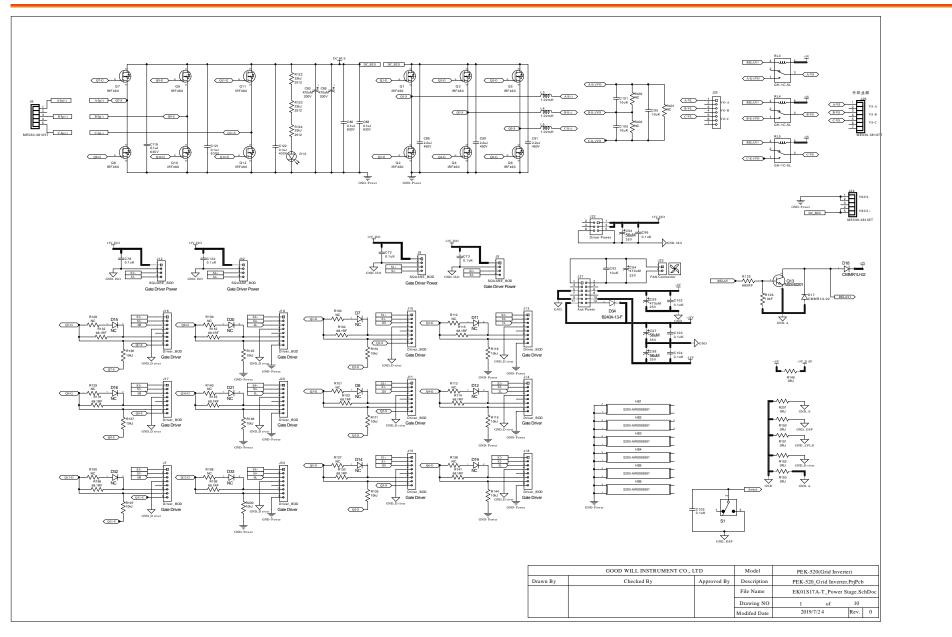

T-Wind Emulator	
Grid Inverter	
F28335 Delfino control CARD	
Gate Driver	
Gate Driver Power	

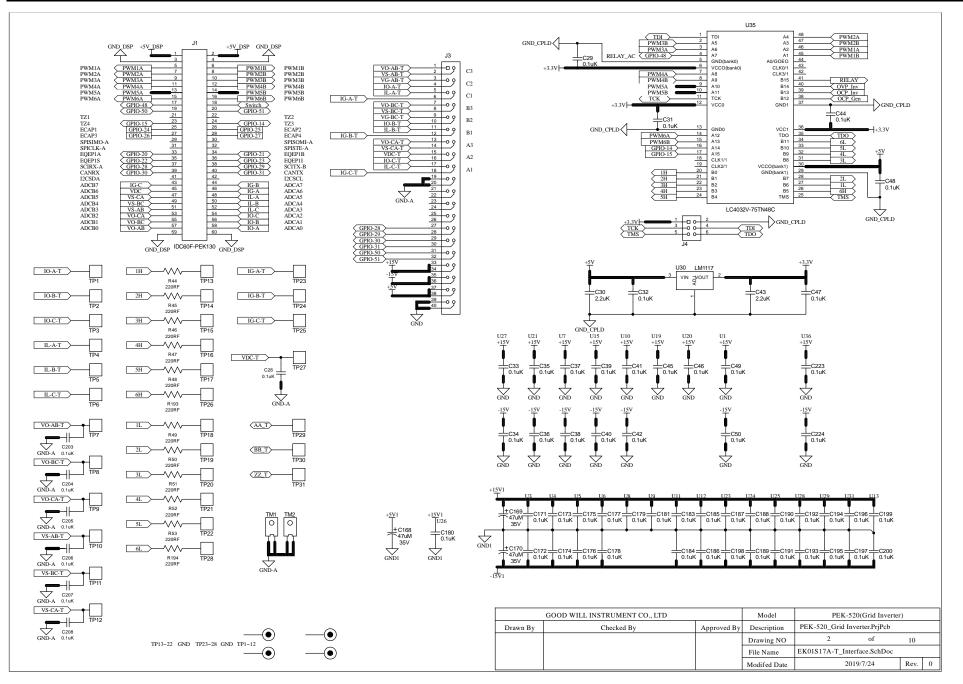
T-Wind Emulator

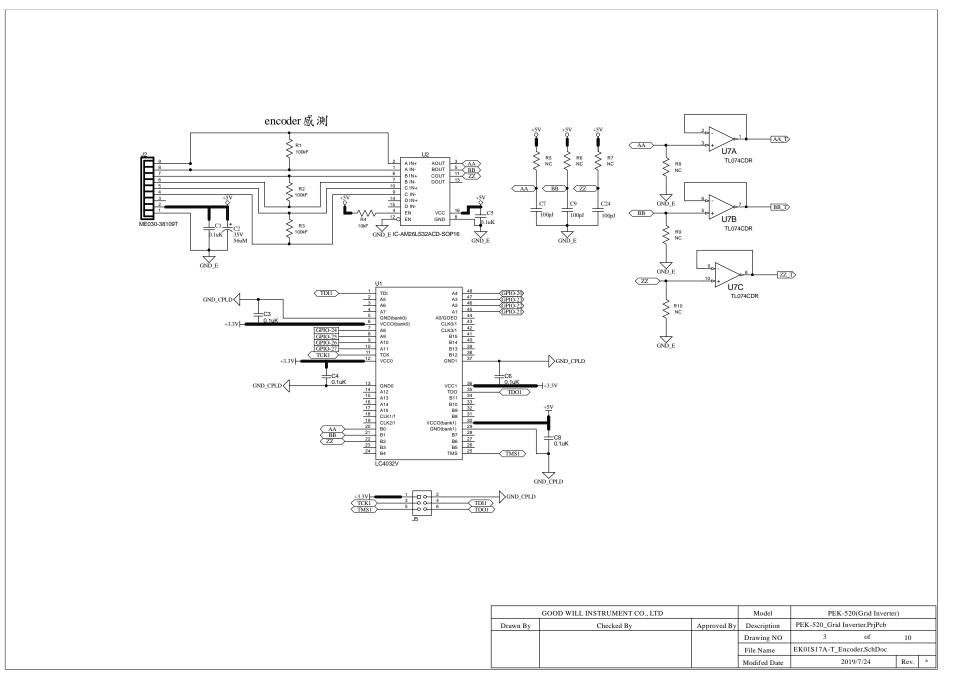


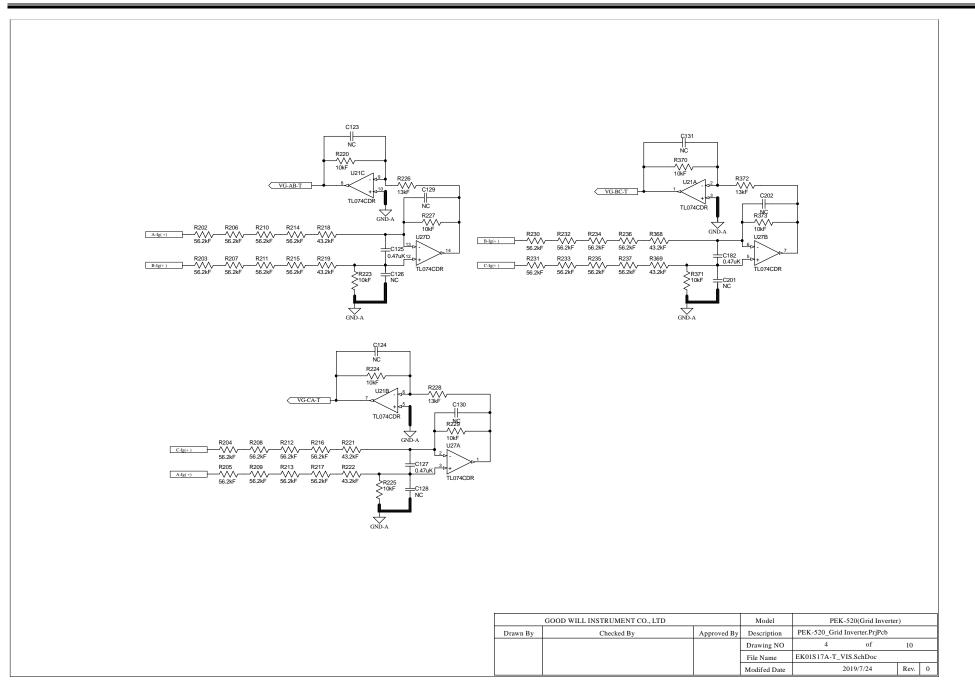

G^W**INSTEK**

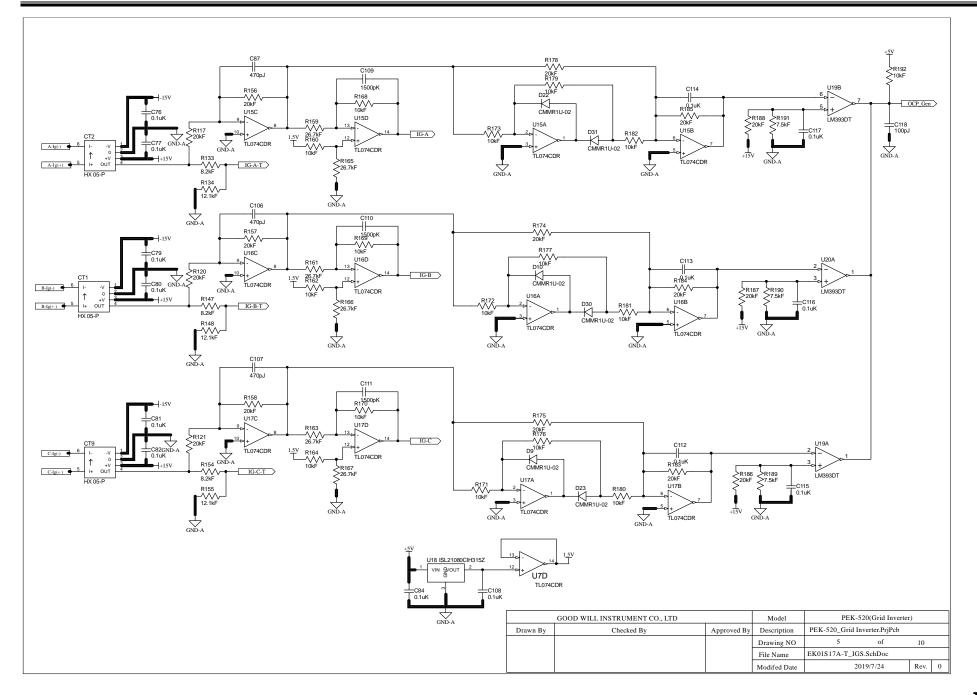


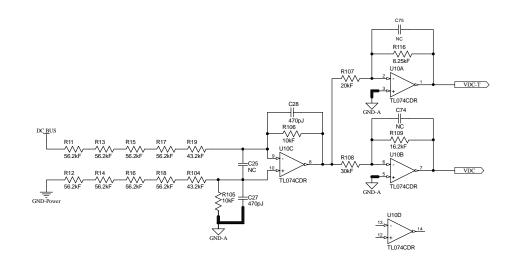

G≝INSTEK

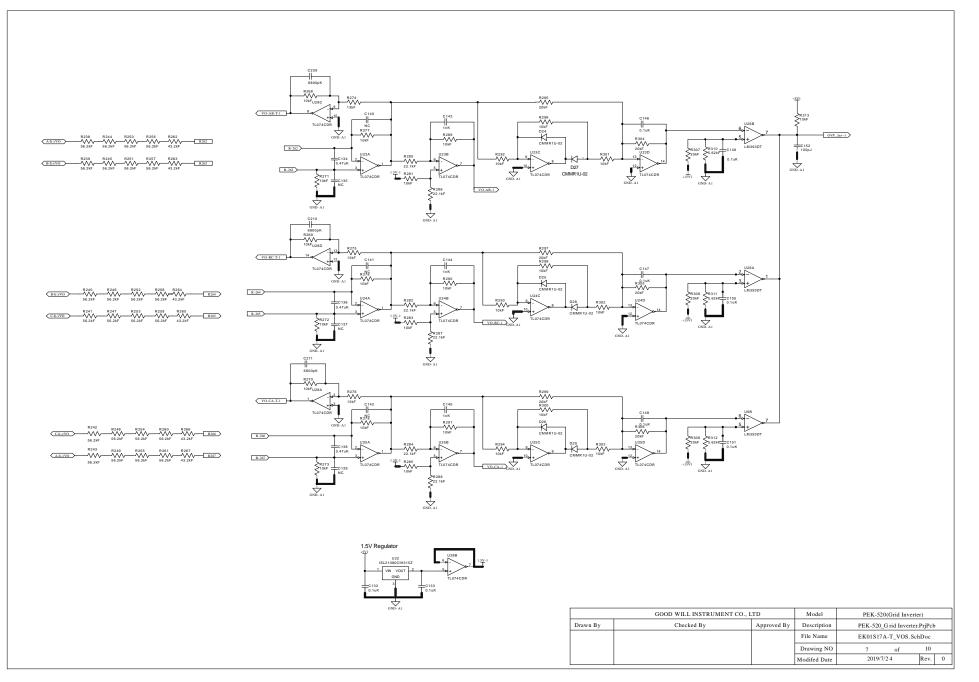


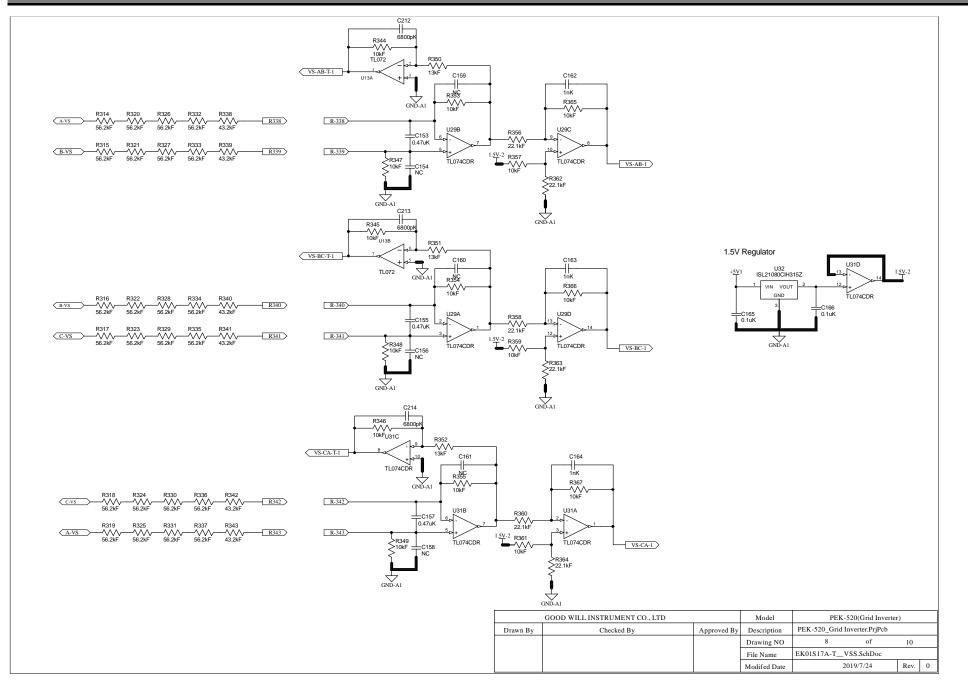


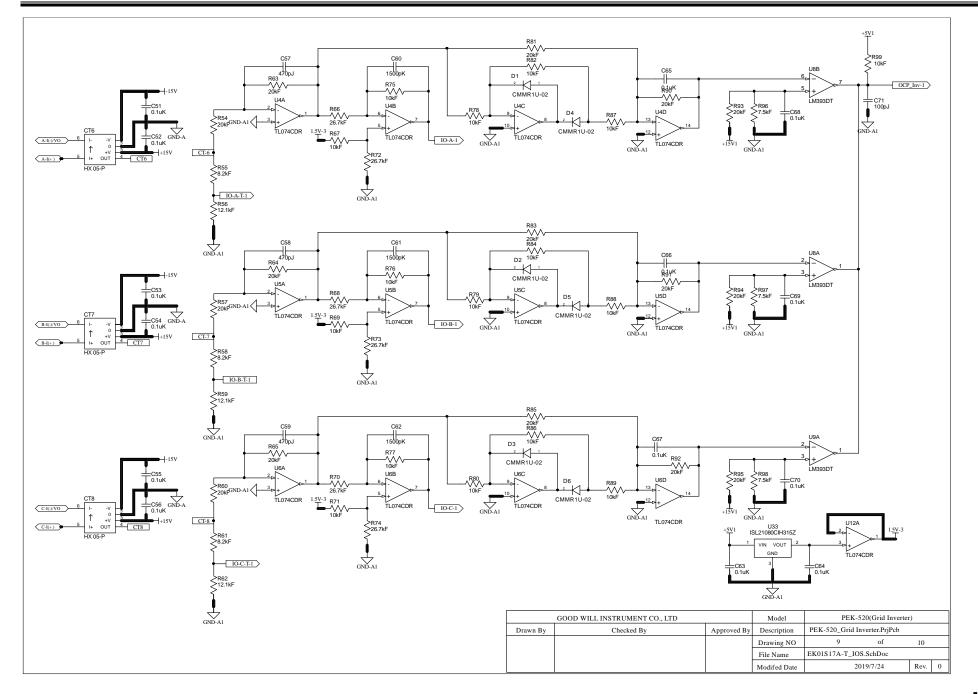

Grid Inverter

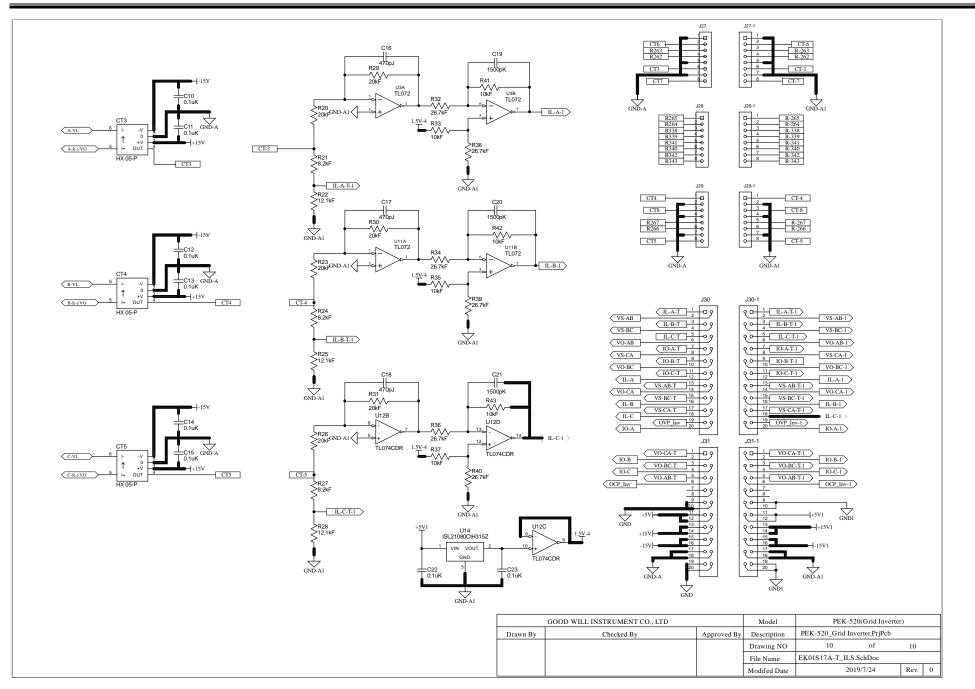



G≝INSTEK

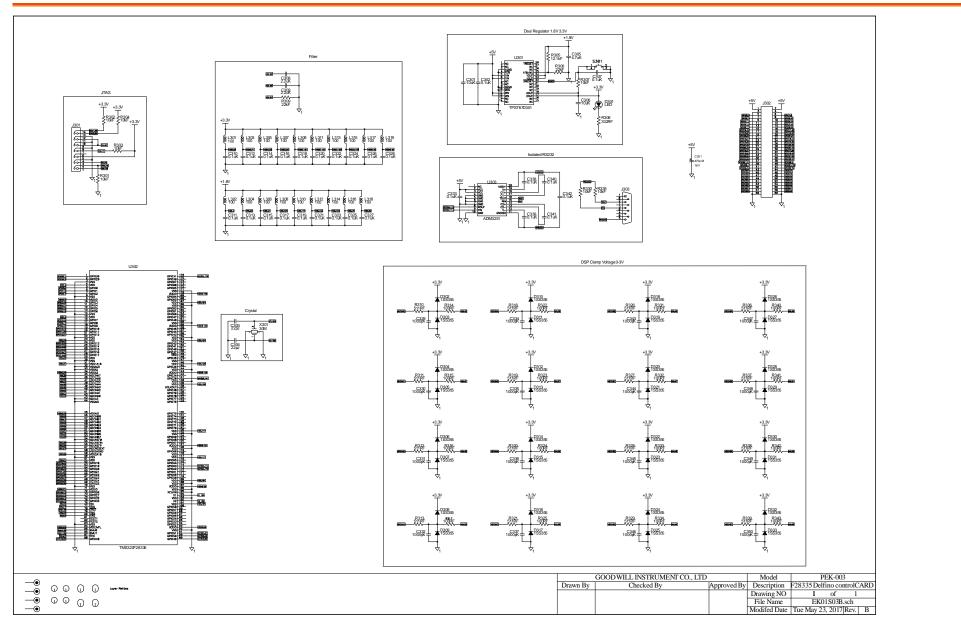


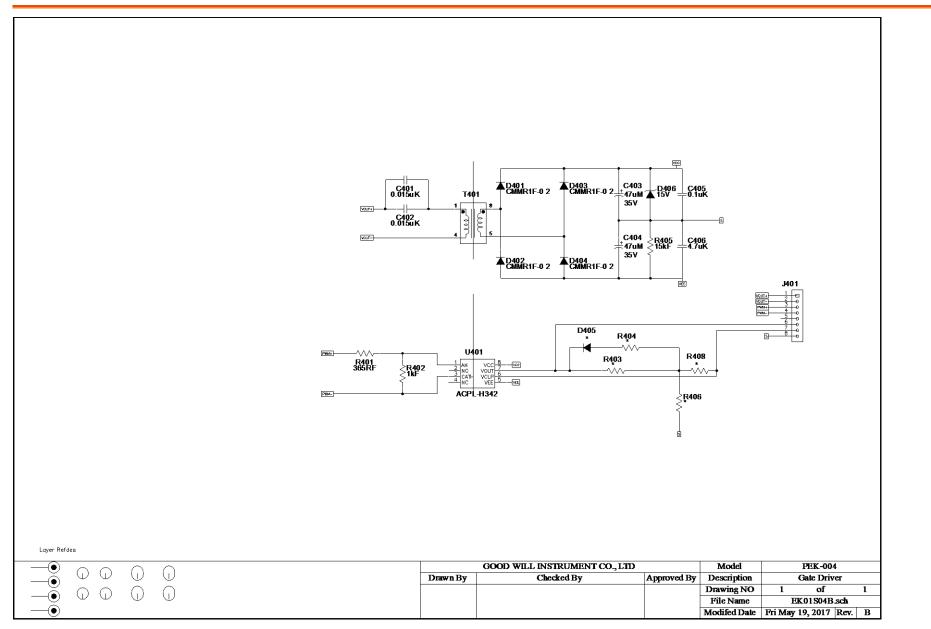




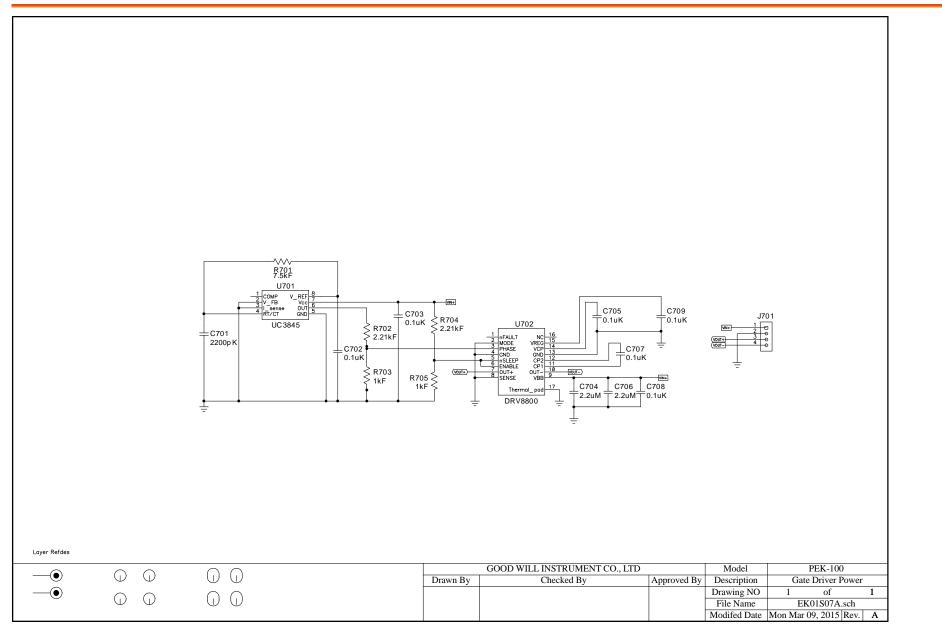

	GOOD WILL INSTRUMENT CO., LTD		Model		*	
Drawn By	Checked By	Approved By	Description	PEK-520_Grid Inverter.PrjPcb		
			Drawing NO	6	of	10
			File Name	EK01S17A-T_VE	3S.SchDoc	
			Modifed Date	20	019/7/24	Rev.

GUINSTEKPEK-520 User Manual





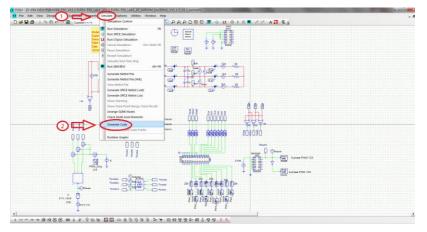
F28335 Delfino control CARD



G≝INSTEK

Gate Driver

Gate Driver Power

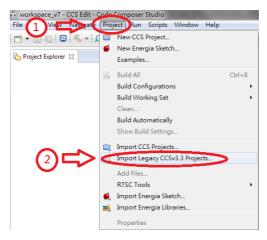


Appendix B – C Code

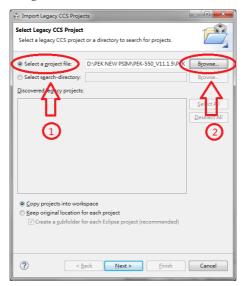
Burning Procedure

This appendix takes "PEK-520_Lab1_3P_SVPWM_Inv (50Hz)_V11.1.5_V1.1" as an example for the instruction. See the detailed steps below.

Operating 1. Open the digital circuit file "PEK-520_ steps Lab1_3P_SVPWM_Inv(50Hz)_V11.1.5_V1.1" within the PSIM program followed by clicking "Generate Code" from "Simulate" tab. The PSIM will generate C Code automatically as shown below.



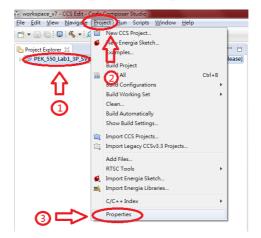
PSIM -	DIPEK NEW PSIM/PEK-550	550 V1115/PEX-550 Lab1 V1115/PEX-550 Lab1 JP. SVP1078 Inv:S0Hz) V1115 V111C code1/PEX-550 Lab1 JP. SVP1078 Inv:S0Hz, V1115 V11	- 0 <u>-</u> ×
	Edit Options Window		- 0
i D 🧀 I		※第 Summer(v) ・ (マス) 2 話話 / ● 0 ○ 0 ○ 0 ○ 0 ○ 0 ○ 0 ○ 0 ○ 0 ○ 0 ○ 0	
1/******			
	code is created by SimC	mCoder Version 11.1.5.1 for F2833x Hardware Target	
// // SimCo //	oder is copyright by Pow	Powersim Inc., 2009-2018	
	January 13, 2020 16:5	6.55.35	
	<math.h></math.h>	,	
	"PS_bios.h"		
	float DefaultType; GetCurTime() PS_GetSi	the Time O	
		// To lower PWM value setting time, comment out this line if PWM duty cycle values are strictly limited in the range.	
	t void Task0:		
void Tax			
	nt16 PSD CouClock - 1	150. // MA	
extern		Goldhera:	
extern		(GblVcona1;	
extern		KGM/conb1; KGM/conb1;	
extern		Aubreconce () GlobBaart:	
	being the second	operations of a	
	tem aGblSciOutBuf[400 a aGblSciInValue[1] = 8		
Uint16 a	GblSciOutAllow[12] = {	- 10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
Uint16 a	GblSciOutCnt[12] = {0,	[0,0,0,0,0,0,0,0,0,0,0,0];	
	GblSciState = 0;	- 0.1.1.1.1.1.1.11:	
		= {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0016.6:Psm_ILb-
#define	PSC_SCI_SENDOUT_FLA	FLAG 0x2000	
	PSC_SCL_INITIAL PSC_SCL_START	0 0×5000000	
	PSC_SCL_START	0x300000	
	PSC_SCL_RESTART	0x200000	
1 +	······································	1 年 4 2 2 2 3 3 1 2 3 4 2 3 3 2 3 4 1 0 3 9 3 4 1 0 3 9 9 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	

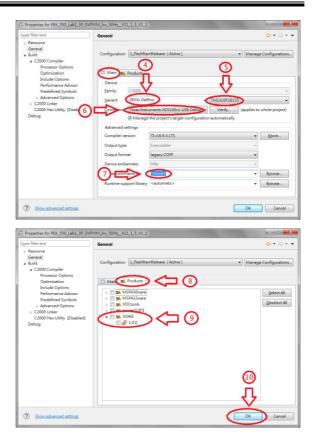

2. A folder of identical name with the PSIM circuit file in which the required files for burning and C Code are well saved will be generated in the location of PSIM circuit file by system.

PEK-S50_Labl_3P_SVPVM_Jm(50Hz)_V1115_V11 (C code) PEK-S50_Labl_3P_SVPVM_Jm(50Hz)_V1115_V11 PEK-S50_Sim1_3P_SVPVM_Jm(50Hz)_V1115_V11	2020/1/13 下 2019/8/9 下件 2019/12/24 7 2019/12/24 7	- 05:20 下午 02:19	檔案資料夾 PSIM Document PSIM Document PSIM Document	14 KB 171 KB 105 KB
名稱	修改日期	類型	大小	
F2833X_Headers_nonBIOS F28335_FLASH_Lnk F28335_FLASH_Lnk S28335_FLASH_Lnk passwords petk_550_Lab1_3P_SVPWM_Inv_50Hz_V11_1_5_V1_1 PEK_550_Lab1_3P_SVPWM_Inv_50Hz_V11_1_5_V1_1 PE_5bios	2020/1/13 下午 0 2020/1/13 下午 0 2020/1/13 下午 0 2020/1/13 下午 0 2020/1/13 下午 0 2020/1/13 下午 0	Windows 命令指 ASM Source File C Source File	9 KB 7 KB 6 KB 4 KB 4 KB 13 KB 5 KB 22 KB	
■ PsBiosRamF33xFloat 鄱 PsBiosRamF33xFloat 鄱 rts2800_fpu32_fast_supplement	2018/7/25 上午 0 2018/7/25 上午 0 2018/7/25 上午 0 2013/1/16 下午 0	Altium Library Altium Library	631 KB 636 KB 17 KB	

3. Open CCS and select "Project" tab followed by clicking "Import Legacy CCSv3.3 Projects" as the figure below.

4. Go to "Select a project file" and click "Browser" followed by searching the folder where C Code is located and selecting the file with name extension ".pjt" as the following figure shown.

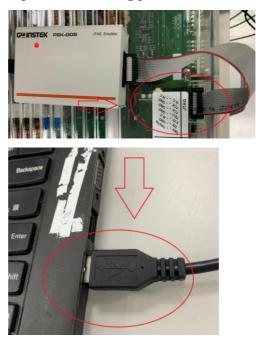


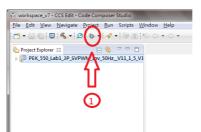

 Select " Copy projects into workspace " followed by clicking "Next" and then "Finish" to import C Code into CCS program. See the figure below.

🔅 Import Legacy CCS Projec	ts	
Select Legacy CCS Project Select a legacy CCS project		
 Select a project file: Select search-directory: 	D:\PEK NEW PSIM\PEK-550_V11.1.5\PEK	Browse
Discovered legacy projects:		biowse
		Select All
0 V		
 Copy projects into work <u>Beep original to strong</u> Create a subfolder for 		
? < <u>B</u>	ack Next > Einish	Cancel

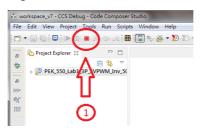

Import Legacy CCS Projects			
Select Compiler			1
Select a compiler version for e	ach migrated p	roject.	
Project	Device Fa	Compiler	<u>E</u> dit
PEK_550_Lab1_3P_SVPW	🛋 C2000	16.9.3.LTS	
		1	2
			<u>ی</u>
			7
(?) < Back	Net	> Fir	ish Cancel
(?) < <u>B</u> ack	Next	> <u> </u>	lish Cancel
Import Legacy CCS Projects			
Select Compiler Select a compiler version for ea	ach migrated p	roject.	
Project	Device Fa	Compiler	Edit
PEK_550_Lab1_3P_SVPW		16.9.3.LTS	
*	_	_	
Import Legacy CCS Projects			
Issues that may require y project(s). Please see the			
			· · · · •
			ОК
			ОК
1			ОК
	_		OK
	_		ОК
			OK
			OK

- 6. Select C Code file and choose "Properties" from "Project" tab. The setting steps are as follows.
 - 1) Select "TMS320F28335" of "2833X Delfino" from Variant under Main tab.
 - Select "Texas Instruments XDS100v1 USB Debug Probe" from Connection under Main tab.
 - 3) Select "none" from Linker command file under Main tab.
 - Deselect "XDAIS" under Project tab. (Ignore this step if your CCS version doesn't provide this option.

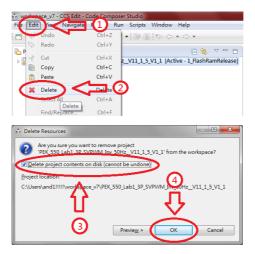




 After the setting, click "Build" for compilation. If no errors occur after compiling, the program is eligible for burning. Simply ignore the warnings, which have no impact on burning process.

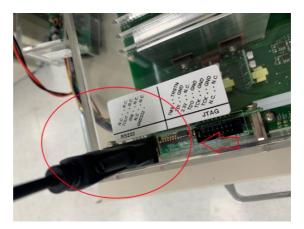


8. Connect PEK-006 to PC and PEK module respectively followed by clicking "Debug" to proceed to burning process.

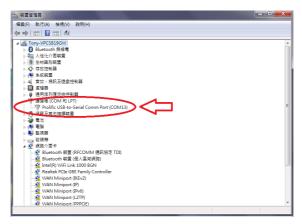


9. After the burning process, click "Terminate" and remove "PEK-006" to finish the entire procedure.

10. If it needs to delete file, select C Code file followed by selecting "Delete" under "Edit" tab and checking "Delete project contents on disk". Finally, click "OK" to complete the action.


Appendix C – RS232 Connection

Operating steps


1. Connect PEK-005A to PEK module and make sure DSP is working normally.

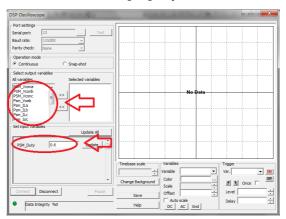
2. Connect one end of RS232 cable to PC, and the other end to the RS232 connector of PEK module.

3. Open Device Manger from PC and identify the COM port number being utilized by RS232 cable.

4. Open PSIM program and select "DSP Oscilloscope" under "Utilities" tab.

G≝INSTEK

🔁 PSIM	
: 🗅 🚅 🖶 🚳 👗 🛍 🖻 🗠 🗠 📓 🖢 👝	▲ マ× 2 鼓越 / ● 空尽 2 良
File Edit View Design Suites Subcircuit Ele	Sinulate Option Utilities Window Help
	Parameter Tool
	Script Tool
	s2z Converter
	SPICE Netlist Check
	InstaSPIN Parameter Editor
·	SimCoupler Setup
	Set Default PSIM Program
()	
	Device Database Editor
	Curve Capture Tool
	B-H Curve
	Solar Module (physical model)
	Ultracapacitor Model Tool
	Launch/Export to SmartCtrl
	Unit Converter
	Calculator


- 5. The Port settings are as follows.
 - 1) Select the COM port being used by RS232.
 - 2) Set 115200 for Baud rate.
 - 3) Set None for Parity check.

6. After the settings, click "Connect" to proceed to RS232 connection.

DSP Oscilloscope	
Port settings Test Serial port: 13 Baud rate: 115200 • Parity check: None •	
Operation mode Continuous C Snap-shot	
Al variables Selected variables	No Pata
<	
Set input variables Update All	
	Timebase scale
	Variable Var. Var.
	Change Background Scale
	Save Offset - Cell - Delay - Delay - Delay

7. Both the output and input variables schemed within PSIM circuit can be clearly observed when connection is properly established.

