單相光伏逆變器模塊

PEK-510

實驗指導書 ^{固緯料號} NO. 82EK-11000M01

ISO-9001 認證企業

本手冊所含資料受到版權保護,未經固緯電子實業股份有限公司預 先授權,不得將手冊內任何章節影印、複製或翻譯成其它語言。

本手冊所含資料在印製之前已經過校正,但因固緯電子實業股份有 限公司不斷改善產品,所以保留未來修改產品規格、特性以及保養 維修程式的權利,不必事前通知。

固緯電子實業股份有限公司 新北市土城區中興路 7-1 號

簡介	
章節說明	10
<mark>實驗</mark> 1升壓式轉換器	
電路模擬	12
實驗設備	
實驗步驟	16
實驗目的	
實驗結果	
結論	20
實驗2升壓式轉換器之輸人電壓控制	21
電路模擬	21
實驗設備	24
實驗步驟	25
實驗目的	27
實驗結果	27
結論	
實驗 3 升壓式轉換器之最大功率點追蹤	29
電路模擬	
實驗設備	
實驗步驟	
實驗目的	
實驗結果	
結論	
蒈驗4	27
雪攺梢擬	

G≝INSTEK

實驗設備	
實驗步驟	41
實驗目的	
實驗結果	
結論	
實驗5單相並網逆變器	47
電路模擬	
實驗設備	
實驗步驟	
實驗目的	
實驗結果	
結論	59
實驗6單相光伏並網逆變器	60
電路模擬	60
實驗設備	63
實驗步驟	64
實驗目的	67
實驗結果	67
結論	
實驗7單相光伏並網逆變器PQ控制	70
電路模擬	
實驗設備	74
實驗步驟	75
實驗目的	
實驗結果	
結論	
賞 颐 δ 單相 逆變 器 乙 纰 島 保 護	
電路模擬	
實驗設備	

實驗步驟	
實驗目的	
實驗結果	
結論	98
<mark>附錄 A PEK-510 電路圖</mark>	
Single Phase PV Inverter	
F28335 Delfino control CARD	
Gate Driver	
Gate Driver Power	106
<mark>附錄 B C code 燒錄流程</mark>	107
附錄 B C code 燒錄流程 附錄 C RS232 連線	107
附錄 B C code 燒錄流程 附錄 C RS232 連線 附錄 D SAS 軟體操作手冊	107 116 120
附錄 B C code 燒錄流程 附錄 C RS232 連線 附錄 D SAS 軟體操作手冊 介紹	107 116 120 120
 附錄 B C code 燒錄流程 附錄 C RS232 連線 附錄 D SAS 軟體操作手冊 介紹 安裝與啓動 	107 116 120 120 120
 附錄 B C code 燒錄流程 附錄 C RS232 連線 附錄 D SAS 軟體操作手冊 介紹 安裝與啓動 界面說明 	
 附錄 B C code 燒錄流程 附錄 C RS232 連線 附錄 D SAS 軟體操作手冊 介紹 安裝與啓動 界面說明 操作 	

PEK-510為單相光伏逆變器模塊(Single Phase PV Inverter Module),如圖 0.1 所示,前級為升壓式 轉換器(Boost Converter)架構,後級為單相全橋逆 變器(Single Phase Inverter)架構,其為全數位控制 系統,實施方法如圖 0.2,目的在提供電力轉換器 採用數位控制的學習平台,讓使用者透過 PSIM 軟 體,除以模擬方式學習電力轉換器的原理、分析及 設計外,亦可透過 PSIM 之 SimCoder 工具將控制 電路轉換為數位控制程式,並可實際將以 DSP 取 代之電路再作一次模擬,最後並可將透過模擬驗證 過之控制程式燒錄於 DSP 晶片中,再透過 DSP 進 行控制及通訊,以驗證所設計電路及控制器之正確 性。

圖 0.1 單相光伏逆變器 實驗模組

PEK-510 共可完成八個實驗,分別如下:

- 1. 升壓式轉換器 (Boost Converter)
- 2. 升壓式轉換器之輸入電壓控制 (Input Voltage Control of Boost Converter)
- 3. 升壓式轉換器之最大功率點追蹤 (MPPT Control of Boost Converter)
- 4. 單相升壓獨立式逆變器 (Single Phase Boost Stand-alone Inverter)
- 5. 單相並網逆變器 (Single Phase Grid-connected Inverter)
- 6. 單相光伏並網逆變器 (Single Phase PV Grid-connected Inverter)
- 7. 單相光伏並網逆變器 PQ 控制 (PQ Control of Single-phase PV Grid-connected Inverter)
- 8. 單相逆變器之孤島保護 (Single Phase Islanding Protection Inverter)

進行實驗時除需要 PEK-510 本身外,仍需搭配 PEK-005A(輔助電源, 如圖 0.3)與 PEK-006 (JTAG 燒錄器,如圖 0.4)並在 PTS-5000 的實驗 平台上完成,如圖 0.5。

簡介

圖 0.3 輔助電源模組

圖 0.4 JTAG 燒錄器

G^WINSTEK

G≝INSTEK

PEK-510 DSP 輸入輸出腳位配置如圖 0.6,其電路圖可參考附錄 A,可區分為功率電路、感測電路、驅動電路以及保護電路。其中感測電路分為兩部分,其一為測試點量測使用,另一部分為回授 DSP 控制使用,其衰減倍率各不相同,分別如下表 0.1 與 0.2。

表 0.1 PEK-510 測試點的量測比例

	感測項目	感測比例
1	升壓轉換器輸入電壓(Vin)	0.0249
2	直流鍊電壓(VBUS)	0.0249
3	升壓轉換器輸入電流(lin)	0.8
4	升壓轉換器電感電流(IB)	0.8
5	逆變器輸出電流(Io)	0.8
6	逆變器負載電流(IL)	0.8
7	逆變器輸出電壓(Vo)	0.0124
8	市電電壓(Vs)	0.0124

	感測項目	感測比例
1	升壓轉換器輸入電壓(Vin)	0.0249
2	直流鍊電壓(VBUS)	0.0249
3	升壓轉換器輸入電流(lin)	0.6
4	升壓轉換器電感電流(IB)	0.6
5	逆變器輸出電流(lo)	0.2996
6	逆變器負載電流(IL)	0.2996
7	逆變器輸出電壓(Vo)	0.0124
8	市電電壓(Vs)	0.0124

表 0.2 PEK-510 DSP 的回授比例

章節說明

章節安排如下

簡介	簡略介紹本模組的實驗方式、實驗項目、電路組 成以及各章節內容等。
實驗1 升壓式轉換器	主要學習 PWM 切換升壓式轉換器之原理及工作 模式,透過 PEK-510 模塊了解電壓及電流之量測 方法,同時學習 TI F28335 DSP IC 腳位、PWM 及 A/D 硬體之設定,並了解如何利用 RS-232 進 行 DSP 內部信號之控制與量測。
實驗 2 升壓式轉換器之輸 入電壓控制	主要學習升壓式轉換器之小訊號模型推導,並學 習輸入電壓控制法,針對硬體進行規劃後透過 SimCoder進行程式撰寫。
實驗3 升壓式轉換器之最 大功率點追蹤	了解 PV 模組特性及各式 MPPT 方法,學習擾動 觀察法之 SimCoder 程式撰寫,並透過 PEK-510 之升壓式轉換器來確認實驗結果。
實驗4 單相升壓獨立式逆 變器	主要學習單相逆變器之建模,並學習電壓迴路及 電流迴路控制器之設計,針對硬體進行規劃後透 過SimCoder進行程式撰寫。
實驗 5 單相並網逆變器	了解單相市電並聯逆變器基本原理及結構,同時 學習單相並聯逆變器之鎖相迴路設計方法,並學 習電壓迴路及電流迴路控制器設計,針對市電並 聯逆變器進規劃後透過 SimCoder 進行程式撰 寫。
實驗 6 單相光伏並網逆變 器	了解光伏並網逆變器之原理及結構,並將升壓式 轉換器與單相逆變器結合形成光伏並網逆變器之 實驗,進行規劃後透過SimCoder進行程式撰 寫。

G^W**INSTEK**

實驗 7	了解智慧型逆變器之實功管理與虛功注入之驗証
單相光伏並網逆變	能力,並針對硬體進行規劃後透過 SimCoder 進
器 PQ 控制	行程式撰寫。

實驗8

保護

了解孤島保護的目的及孤島測試驗証的方法,並 單相逆變器之孤島 針對硬體進行規劃後透過 SimCoder 進行程式撰 寫。

電路模擬

轉換器規格如下:

Input Voltage $V_{in} = 50V$ BUS Voltage $V_{bus} = 80V$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ $K_s = 0.6$ (DC current sensing factor) $K_v = 1/40$ (DC voltage sensing factor)

依照上述參數所建立的類比電路如下圖 1.1: PSIM 檔名為: PEK-510_Sim1_Boost_V11.1.5_V1.1

G≝INSTEK

其模擬結果如圖 1.2, 1.3:

圖 1.2 實驗一類比電路模擬波形

圖 1.3 實驗一類比電路模擬波形

GWINSTEK

再参照類比電路所建立的數位電路如下圖 1.4 PSIM 檔名為: PEK-510_Lab1_Boost_V11.1.5_V1.1

圖 1.4 實驗一 PSIM 數位電路圖

其模擬結果如圖 1.5:

圖 1.5 實驗一數位電路模擬波形

模擬確認無誤後,利用"Simulate"的"Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, PEL-3031E)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 1.6,請依此圖完成接線。

圖 1.6 實驗一接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開闢,開啟後 DSP 的紅色顯示燈亮起,如圖 1.7,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄。

G≝INSTEK

4. 如圖 1.8 所示,將示波器探棒分別接至 IB, V BUS上。

圖 1.8 示波器探棒接線 圖

5. 如圖 1.9 所示,電源供應器 PSW160-7.2 設定為電壓 50V,電流 3A。

圖 1.9 PSW 設定圖

6. PEL-3031E 電源開啟後,負載模式為 CR Mode, Range 為 Low, Channel_A 設定為 50Ω , Channel_B 設定為 100Ω , 如圖 1.10。

圖 1.10 PEL-3031E 負載 設定

7. 設定完畢後,將 PSW 電源輸出,最後再將 PEK-510 開啟。

G≝INSTEK

實驗目的

本實驗為升壓式轉換器,負載分別設定為 100 Ω 及 50 Ω 情況下,探討 其對輸出電壓波形影響。

實驗結果

(1) 電子負載 100Ω

如圖 1.11 所示,當負載設定為 100 Ω ,此時輸出電壓 80V、輸出功率 62.85W。如圖 1.12 所示,觀測 I_B為 1.08A(實際值 1.35A),V_{Bus}為 1.98V(實際值 79.52V)

G^WINSTEK

(2) 電子負載 50Ω

如圖 1.13 所示,當負載設定為 50Ω,此時電路功率為輸出電壓 80V、輸出功率 128W。如圖 1.14 所示,觀測 I_B為 2.18A(實際值 2.725A), V_{Bus}為 1.98V(實際值 79.52V)。

依照不同負載的操作,依序將結果填入表 1.1, 感測比例請參照表 0.1。

表 1.1 不同負載時輸出電壓電流量測數據				
IB(Irms) IB(Irms) VBUS(Vrms) VBUS(Vrm				ns) VBUS(Vrms
	(量測值)	(實際值)	(量測值)	(實際值)
負載(100Ω)	1.08A	1.35A	1.98V	79.52V
負載(50Ω)	2.18A	2.73A	1.98V	79.52V

結論

由表 1.1 可發現,升壓式轉換器於負載變動時,IB 電流隨著負載變化 (半載至滿載)而有所改變,但輸出電壓仍透過迴授控制維持穩定。

電路模擬

轉換器規格如下:

Input Voltage $V_{in} = 50V$ BUS Voltage $V_{bus} = 80V$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ $K_s = 0.6$ (DC current sensing factor) $K_v = 1/40$ (DC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor)

PSIM 檔名為: PEK-510_Sim2_Input_Control_Boost_V11.1.5_V1.1

圖 2.1 實驗二 PSIM 類比電路圖

GWINSTEK

其模擬結果如圖 2.2, 2.3:

圖 2.3 實驗二類比電路模擬波形

G^WINSTEK

再參照類比電路所建立的數位電路如下圖 2.4 PSIM 檔名為: PEK-510_Lab2_Input_Control_Boost_V11.1.5_V1.1

圖 2.4 實驗二 PSIM 數位電路圖

其模擬結果如圖 2.5:

圖 2.5 實驗二數位電路模擬波形

模擬確認無誤後,利用"Simulate"的"Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006 一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, PEL-3031E)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 2.6,請依此圖完成接線。

圖 2.6 實驗二接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 2.7,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄。

G≝INSTEK

4. 如圖 2.8 所示, PSW160-7.2 設定為電壓 60V, 電流 1.2A。

圖 2.8 示波器探棒接線 圖

5. 如圖 2.9 所示, PEL-3031E 設定為 CV 模式, Value 設定為 80V。

圖 2.9 PEL-3031E 設定

6. 設定完畢後,依序將 PSW 與 PEL 輸出開啟,最後將 PEK-510 開 啟。

實驗目的

本實驗為升壓式轉換器,透過閉迴路控制將輸入電壓穩定在所設計之 電壓值。由於輸出電壓沒有做迴授控制,因此需將電子負載設定為 CV 模式用來維持輸出電壓,避免開機時因輸出電壓過高而造成損壞。

實驗結果

(1) 輸入電壓設定為電壓 60V·電流 1.2A

如圖 2.10 所示,開啟 PEK-510 後,電源供應器電壓會由預設值 60V 調整至 50V,並進入 CC 模式,以設定的電流值輸出。如圖 2.11 所 示,此時電子負載之輸出電壓為 80V 與功率 56W。

G^wINSTEK

圖 2.12

(2) 輸入電壓設定為電壓 60V, 電流 2.4A

如圖 2.12 所示,開啟 PEK-510 後,電源供應器電壓會由預設值 60V 調整至 50V, 並進入 CC 模式,以設定的電流值輸出。如圖 2.13 所 示, 電子負載之輸出電壓為 80V 及功率 114W。

結論

此實驗為升壓式轉換器,從實驗中可觀測到,回授系統會將輸入電壓 控制至所設計之電壓值。

電路模擬

轉換器規格如下:

Input Voltage $V_{in} = 50V$ BUS Voltage $V_{bus} = 80V$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ $K_s = 0.6$ (DC current sensing factor) $K_v = 1/40$ (DC voltage sensing factor)

依照上述參數所建立的類比電路如下圖 3.1: PSIM 檔名為: PEK-510_Sim3_MPPT_Control_Boost_V11.1.5_V1.1

圖 3.1 實驗三 PSIM 類比電路圖

GWINSTEK

其模擬結果如圖 3.2:

圖 3.2 實驗三類比電路模擬波形

再参照類比電路所建立的數位電路如下圖 3.3 PSIM 檔名為: PEK-510_Lab3_MPPT_Control_Boost_V11.1.5_V1.1

圖 3.3 實驗三 PSIM 數位電路圖

因實際產生 Code 的電路,其 MPPT 調整的頻率為 4Hz,但如以此 檔案模擬需耗費相當長的時間,所以另外修改一個 MPPT 調整頻率 為 100Hz 的數位電路,其檔名為

"PEK-510_Sim3D_MPPT_Control_Boost_V11.1.5_V1.1",以此檔案 模擬可以在較短時間內看到模擬結果,其模擬結果如圖 3.4:

圖 3.4 實驗三數位電路模擬波形

模擬確認無誤後,利用"Simulate"的"Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006 一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, PEL-3031E)
- PC 一台

G^W**INSTEK**

1. 實驗接線圖如圖 3.5,請依此圖完成接線。

圖 3.5 實驗三接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 3.6,此時表示 DSP 電源正常。

- 3. 請依照附錄 B(燒錄流程)進行燒錄。
- 4. 模擬光伏系統之設定步驟請參考附錄 D(SAS 軟體操作手冊)進行 設定,如圖 3.7 所示,第一條曲線之開路電壓為 65V、短路電流 為 2.7A、最大功率點電壓為 50V 及最大功率點電流為 2.4A。如 圖 3.8 所示,第二條曲線數值設定在第一條曲線的 90%,因此第 二條曲線之開路電壓為 58.5V、短路電流為 2.43A、最大功率點電 壓為 45V 及最大功率點電流為 2.16A。

G^W**INSTEK**

5. 如圖 3.9 所示,直流負載設定 CV 模式,電壓為 80V。

6. 設定完畢後,透過 SAS 程式開啟 PSW 輸出並將 PEL 拉載,最後 再開啟 PEK-510 進行測試。

圖 3.9
實驗目的

模擬光伏面板操作在不同的 PV 曲線時,透過最大功率點追蹤控制,維持最大功率輸出,以達到最高利用率。

實驗結果

透過 SAS 程式模擬光伏面板的 PV 曲線,並藉由最大功率點追蹤控制,在任意的環境條件下都設法維持最大功率輸出,以達到最高利用率。如圖 3.10, 3.11 所示,可發現輸出功率逐漸往最大功率點靠近並維持。

然而光伏面板的 PV 曲線隨環境跟外在因素不停變化,因此藉由第二 條曲線來驗證在任意的環境條件下都能夠維持最大功率輸出,以達到 最高利用率。如圖 3.12, 3.13 所示,亦可發現輸出功率逐漸往最大功 率輸出點靠近並維持。

GWINSTEK

結論

此實驗為升壓式轉換器,模擬光伏面板受到強光及環境等外界因素影響變化時,其 PV 曲線也隨之變化,但 MPPT 控制器仍可找到當下曲線的最大功率點。

電路模擬

系統規格如下:

DC Input Voltage $V_b = 50V$ DC bus Voltage $V_d = 80V$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (Boost PWM) $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (Inverter PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ L = 661.5uH, C = 10uF $K_s = 0.3$ (AC current sensing factor) $K_s = 0.6$ (DC current sensing factor) $K_v = 1/80$ (AC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor) 依照上述參數所建立的類比電路如下圖 4.1: PSIM 檔名為: PEK-510_Sim4_1P_Boost_SA_Inv(50Hz)_V11.1.5_V1.1

圖 4.2 實驗四類比電路模擬波形

再參照類比電路所建立的數位電路如下圖 4.3 PSIM 檔名為:

PEK-510_Lab4_1P_Boost_SA_Inv(50Hz)_V11.1.5_V1.1

圖 4.3 實驗四 PSIM 數位電路圖

其模擬結果如圖 4.4:

圖 4.4 實驗四數位電路模擬波形

模擬確認無誤後,利用"Simulate"的"Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006 一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, GPL-500)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 4.5,請依此圖完成接線。

圖 4.5 實驗四接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 4.6,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄。

4. 如圖 4.7 所示,將示波器探棒分別接至 Vo, Io。

圖 **4.7** 示波器探棒接線 圖

5. 如圖 4.8 所示, PSW160-7.2 設定為電壓 50V, 電流 3A。

圖 4.8 PSW 設定圖

 如圖 4.9 所示, GPL-500 操作步驟為:開啟 GPL500 電源→Single Phase Load 旋鈕調至 2(Resistance with LC Load) →1SS、2SS、 3SS 及 LCS 設定皆為 OFF, 此設定為空載模式。

圖 4.9 GPL-500空載設 定

7. 設定完畢後,開啟 PSW,最後將 PEK-510 開闢開啟。

實驗目的

本實驗為單相逆變器實驗,透過閉迴路控制,確保輸出電壓在任何負載變動下,皆可維持穩定輸出,並觀測輸出電流變化。

實驗結果

(1) 空載

如圖 4.10 所示,於空載時,觀測 Vo RMS 值為 0.504V(實際值為 40.65V), Io RMS 值為 0.175A(實際值為 0.22A)。

(2) 輕載(42Ω)

如圖 4.11 所示, GPL-500 之 1SS 設定為 ON, 2SS, 3SS 設定為 OFF, 此時負載為輕載。

如圖 4.12 所示,於輕載時,觀測 V_ORMS 值為 0.507V(實際值為 40.89V), I_ORMS 值為 0.772V(實際值為 0.97A)。

(3) 中載(21Ω)

如圖 4.13 所示, GPLK-500 之 1SS、2SS 設定為 ON, 3SS 設定為 OFF,此時負載為中載。

如圖 4.14 所示,於中載時,觀測 VoRMS 值為 0.504V(實際值為 40.65V), IoRMS 值為 1.51A(實際值為 1.89A)。

G^WINSTEK

圖 4.14 於中載下之 Vo, lo實測波形

如圖 4.15 所示, GPL-500 之 1SS, 2SS, 3SS 設定皆為 ON,此時負載為滿載。

如圖 4.16 所示,於滿載時,觀測 VoRMS 值為 0.503V(實際值為 40.56V), IoRMS 值為 2.26A(實際值為 2.83A)。

圖 4.16 於滿載下之 Vo, lo實測波形

依照 GPL-500 之空載、輕載、中載與滿載設定下,依序將量測之 Vo, Io填入至表 4.1,且參考表 0.1 之感測比例,填入實際值。

	Vo(Vrms) (量測值)	Vo(Vrms) (實際值)	I _O (Irms) (量測值)	I _O (Irms) (實際值)
空載	0.504V	40.65V	0.175A	0.22A
輕載	0.507V	40.89V	0.772A	0.97A
中載	0.504V	40.65V	1.51A	1.89A
滿載	0.503V	40.56V	2.26A	2.83A

表 4.1 GPL-500 不同設定下之電壓電流量測數據

結論

本實驗為單相逆變器實驗,由表 4.1 可發現空載至滿載過程中,輸出 電流逐漸增加,但輸出電壓仍維持於 40V。

電路模擬

系統規格如下:

DC bus Voltage $V_d = 80V$ AC Source Voltage $V = 40 V_{rms}$ $F_s = 20 kHz$, $V_{tri} = 10V_{pp}$ (PWM) L = 661.5 uH, C = 10 uF $K_s = 0.3$ (AC current sensing factor) $K_v = 1/80$ (AC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor) 依照上述參數所建立的類比電路如下圖 5.1: PSIM 檔名為: PEK-510_Sim5_1P_GC_Inv(50Hz)_V11.1.5_V1.1

圖 5.1 實驗五 PSIM 類比電路圖

其模擬結果如圖 5.2:

圖 5.2 實驗五類比電路模擬波形

GWINSTEK

再參照類比電路所建立的數位電路如下圖 5.3 PSIM 檔名為: PEK-510_Lab5_1P_GC_Inv(50Hz)_V11.1.5_V1.1

圖 5.3 實驗五 PSIM 數位電路圖

其模擬結果如圖 5.4:

圖 5.4 實驗五數位電路模擬波形

模擬確認無誤後,利用"Simulate"的 "Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, APS-300, GPL-500)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 5.5,請依此圖完成接線。

圖 5.5 實驗五接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 5.6,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄。

G^WINSTEK

4. 如圖 5.7 所示,將示波器探棒分別接至 VBUS, Vo。

圖 5.7 示波器探棒接線 圖

5. 如圖 5.8 所示, PSW160-7.2 設定為電壓 100V, 電流 1.2A。

圖 5.8 PSW 設定圖

- 如圖 5.9 所示, APS-300 操作步驟為:開啟 APS-300 電源→APS-300 設定頻率為 50Hz →操作模式為 1P2W→電壓為 40V。
- 圖 5.9 APS-300 設定圖

 7. 如圖 5.10 所示,GPL-500 操作步驟為:開啟 GPL500 電源→Single Phase Load 旋鈕調至 2(Resistance with LC Load) →1SS, 2SS, 3SS 設定皆為 OFF, LCS 為 OFF,此設定為空載模式。

圖 5.10 GPL-500空載設 定

8. 設定完畢後,透過 SAS 程式開啟 PSW 輸出,並開啟 APS-300 輸出後,再將 PEK-510 開關開啟。

實驗目的

本實驗為市電並網逆變器系統,探討在不同負載功率需求下,逆變器與市電間功率變化。

實驗結果

(1) 空載

如圖 5.11 所示,觀測 VoRMS 值為 0.499V(實際值為 40.24V), IoRMS 值為 1.77A(實際值為 2.21A)。如圖 5.12 所示,PSW 所提供 輸出功率為 97W,在空載的情況下,逆變器所產生的功率將饋送回 市電,故所有能量透過 APS-300 所吸收,因此可看見 APS 上所顯示 功率為-87.6W(負號表示吸收功率)。

(2) 輕載(42Ω)

如圖 5.13 所示, 1SS 設定為 ON, 2SS, 3SS 設定為 OFF, 此時負載為輕載。

圖 5.13 GPL-500 輕載設 定

如圖 5.14 所示,於輕載情況下,PSW 輸出功率為 97W,此時負載消耗部分功率,而多餘的功率饋送至市電,因此可看見 APS 功率為-50.4W。

圖 5.14 輕載時 PSW 與 APS-300 的功率 狀態

(3) 中載(21Ω)

如圖 5.15 所示, 1SS,2SS 設定為 ON, 3SS 設定為 OFF, 此時負載為 中載。

圖 5.15

GPL-500 中載設 定

如圖 5.16 所示,於中載情況下,PSW 輸出功率為 97W,此時負載所 消耗功率提升,故饋送至市電的功率減少,因此可看見 APS 功率為 -14.0W。

圖 5.16 中載時 PSW 與 APS-300 的功率 狀態

G^wINSTEK

如圖 5.17 所示, 1SS, 2SS, 3SS 設定皆為 ON,此時負載為滿載。

圖 5.17 GPL-500 滿載設 定

如圖 5.18 所示,於滿載情況下,PSW 輸出功率為 97W,此時逆變器 所提供功率不足以支撐負載消耗,這時市電將協助提供不足能量以確 保功率平衡,故 APS-300 提供功率 22.3W。

圖 5.18 滿載下 PSW 與 APS-300 的功率 狀態

實驗完成後,請先關閉 PEK-510,再將 PSW 與 APS-300 及 GPL-500 關閉。

將空載、輕載、中載及滿載之 PSW 與 APS-300 的功率依序填入表 5.1

表 5.1 不同負載下 PSW 與 APS-300 的功率狀態

負載功率	PSW 輸出功率	APS 輸出功率	(考量元件損耗)
空載(0W)	97W	-87.6W	97 + (-87.6) ≑ 0
輕載(38W)	97W	-50.40W	97 +(-50.4) ≑ 38
中載(76W)	97W	-14.0W	97 +(-14.0) ≑ 76
滿載(112W)	97W	22.3W	97 + 22.3 ≑ 112

結論

本實驗為並網逆變器系統,當逆變器所提供之功率大於負載所需功率時,會將其餘之功率饋回市電,反之當逆變器之功率不足以支撐負載 所消耗時,此時市電將輸出功率補足負載功率需求,因而維持系統之 功率平衡。

電路模擬

系統規格如下:

DC Input Voltage $V_b = 50V$ DC bus Voltage $V_d = 80V$ AC Source Voltage $V = 40V_{rms}$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (Boost PWM) $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (Inverter PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ L = 661.5uH, C = 10uF $K_s = 0.3$ (AC current sensing factor) $K_s = 0.6$ (DC current sensing factor) $K_v = 1/80$ (AC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor)

依照上述參數所建立的類比電路如下圖 6.1: PSIM 檔名為: PEK-510_Sim6_1P_PV_GC_Inv(50Hz)_V11.1.5_V1.1

圖 6.1 實驗六 PSIM 類比電路圖

其模擬結果如圖 6.2:

G^wINSTEK

再参照類比電路所建立的數位電路如下圖 6.3 PSIM 檔名為: PEK-510_Lab6_1P_PV_GC_Inv(50Hz)_V11.1.5_V1.1

圖 6.3 實驗六 PSIM 數位電路圖

因實際產生 Code 的電路,其 MPPT 調整的頻率為 2Hz,但如以此 檔案模擬需耗費相當長的時間,所以另外修改一個 MPPT 調整頻率 為 100Hz 的數位電路,其檔名為

"PEK-510_Sim6D_1P_PV_GC_Inv(50Hz)_V11.1.5_V1.1",以此檔案 模擬可以在較短時間內看到模擬結果,其模擬結果如圖 6.4:

圖 6.4 實驗六數位電路模擬波形

模擬確認無誤後,利用 "Simulate" 的 "Generate Code" 自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510一台
- PEK-005A 一台
- PEK-006一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, APS-300, GPL-500)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 6.5,請依此圖完成接線。

圖 6.5 實驗六接線圖

2. 接線完畢後,先確認 PEK-510 的開關為 OFF,之後開啟 PEK-005A 的開關,如圖 6.6 所示,開啟後 DSP 的紅色顯示燈亮起,此時代表 DSP 電源正常。

- 3. 請依照附錄 B(燒錄流程)進行燒錄。
- 4. 模擬光伏系統之設定步驟請參考附錄 D(SAS 軟體操作手冊)進行設定,如圖 6.7 所示,第一條曲線之開路電壓為 65V、短路電流為 2.7A、最大功率點電壓為 50V 及最大功率點電流為 2.4A。如圖 6.8 所示,第二條曲線數值設定在第一條曲線的 90%,因此第二條曲線之開路電壓為 58.5V、短路電流為 2.43A、最大功率點電壓為 45V 及最大功率點電流為 2.16A。

G^wINSTEK

實驗6單相光伏並網逆變器

 如圖 6.9 所示, APS-300 操作步驟為:開啟 APS-300 電源→APS-300 設定頻率為 50Hz →操作模式為 1P2W→電壓為 40V。

 如圖 6.10 所示,GPL-500 操作步驟為:開啟 GPL-500 電源→Single Phase Load 旋鈕調至 2(Resistance with LC Load) →1SS, 2SS, 3SS 設定皆為 ON、LCS 為 OFF,此設定為滿載模式。 圖 6.10 GPL-500 滿載設 定

7. 設定完畢後,透過 SAS 程式開啟 PSW 輸出,並開啟 APS-300 輸 出後,再將 PEK-510 開關開啟。

實驗目的

觀測 PV 曲線的輸出功率是否藉由 MPPT 控制器而達到最大功率輸出。

實驗結果

如圖 6.11, 6.12 所示,由 SAS 程式中,可看到第一條曲線的輸出功率, 會由初始啟動狀態逐漸上升,且最終上升至最大功率點。

G^wINSTEK

圖 6.13

始啟動狀態

如圖 6.13, 6.14 所示,由電源供應器也可看到輸出功率由 SAS 初始啟 動狀態下逐漸上升,且最終上升至最大功率點。

圖 6.14 電源供應器處於 第一條曲線之最 大功率點

如圖 6.15, 6.16 所示,因 I-V, P-V 曲線受環境及外界因素影響,進而 改變為第二條曲線,其輸出功率即使瞬間下降後,仍逐漸上升,且最 終上升至最大功率點。

G^WINSTEK

圖 6.16

SAS 處於第二條 曲線之最大功率 點

如圖 6.17, 6.18 所示,由電源供應器中發現,即使切換至第二條曲線時功率瞬間下降,但最終仍上升至最大功率點。

圖 6.17 電源供應器處於 第二條曲線之切 換瞬間狀態

圖 6.18 電源供應器處於 第二條曲線之最 大功率點

結論

此實驗電路前級為升壓式轉換器,後級為單相逆變器,因太陽能板接 收到強光及環境等外界因素影響,改變 PV 曲線,為確保充分利用, 升壓式電路藉由最大功率點追蹤(MPPT)的功能,使太陽能面板維持 於最大功率輸出,即使 PV 曲線因環境有所影響,仍可達成當下之最 高利用率。單相逆變器則與市電並聯,將能量傳遞至負載及市電。

電路模擬

系統規格如下:

DC Input Voltage $V_b = 50V$ DC bus Voltage $V_d = 80V$ AC Source Voltage $V = 40V_{rms}$ $F_s = 40kHz$, $V_{tri} = 5V_{pp}$ (Boost PWM) $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (Inverter PWM) $L_b = 661.5uH$, $C_{BUS} = 300uF$ L = 661.5uH, C = 10uF $K_s = 0.3$ (AC current sensing factor) $K_s = 0.6$ (DC current sensing factor) $K_v = 1/80$ (AC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor)
實驗7單相光伏並網逆變器PQ控制

依照上述參數所建立的類比電路如下圖 7.1:

PSIM 檔名為:

PEK-510_Sim7_1P_PV_GC_Inv_PQ(50Hz)_V11.1.5_V1.1

其模擬結果如圖 7.2:

圖 7.2 實驗七類比電路模擬波形

G^w**INSTEK**

再参照類比電路所建立的數位電路如下圖 7.3 PSIM 檔名為: PEK-510_Lab7_1P_PV_GC_Inv_PQ(50Hz)_V11.1.5_V1.1

圖 7.3 實驗七 PSIM 數位電路圖

因實際產生 Code 的電路,其 MPPT 調整的頻率為 2Hz,但如以此 檔案模擬需耗費相當長的時間,所以另外修改一個 MPPT 調整頻率 為 100Hz 的數位電路並將設定值 PSM_P0 改為 110,其檔名為 "PEK-510_Sim7D_1P_PV_GC_Inv_PQ(50Hz)_V11.1.5_V1.1",以此 檔案模擬可以在較短時間內看到模擬結果,其模擬結果如圖 7.4、圖 7.5:

圖 7.4 實驗七數位電路模擬波形

圖 7.5 實驗七數位電路模擬波形

模擬確認無誤後,利用"Simulate"的 "Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510 一台
- PEK-005A 一台
- PEK-006 一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, APS-300, GPL-500)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 7.6,請依此圖完成接線。

圖 7.6 實驗七接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 7.7,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄。

4. 如圖 7.8 所示,將示波器探棒分別接至 Vo, Io。

圖 7.8 示波器探棒接線 圖

5. 模擬光伏系統之設定步驟請參考附錄 D(SAS 軟體操作手冊)進行 設定,如圖 7.9 所示,第一條曲線之開路電壓為 65V、短路電流 為 2.7A、最大功率點電壓為 50V 及最大功率點電流為 2.4A。如 圖 7.10 示,第二條曲線數值設定在第一條曲線的 90%,因此第二 條曲線之開路電壓為 58.5V、短路電流為 2.43A、最大功率點電壓 為 45V 及最大功率點電流為 2.16A。

4. 如圖 7.11 所示, APS-300 操作步驟為:開啟 APS-300 電源→APS-300 設定頻率為 50Hz →操作模式為 1P2W→電壓為 40V。

圖 7.11 APS-300 設定圖

 7. 如圖 7.12 所示, GPL-500 操作步驟為:開啟 GPL-500 電源→Single Phase Load 旋鈕調至 2(Resistance with LC Load) →1TS, 2TS, 3TS 設定皆為 ON, LCS 為 OFF,此設定為滿載模式。

- 8. 請依照附錄 C(RS232 連線)進行連線
- 9. 設定完畢後,透過 SAS 程式開啟 PSW 輸出,並開啟 APS-300 輸出後,再將 PEK-510 開關開啟。

實驗目的

此實驗為智慧逆變器(Smart Inverter)的應用,當市電發生電壓或頻率的變化時,逆變器將依當前的狀況藉由系統的PQ控制器調整功率 (實功或虛功)輸出。

實驗結果

(1) 實功控制(P-ω)

如圖 7.13 所示, 系統輸出功率限制值 PSM_Poset 為 150W(初始功率 設定值 PSM_P0 亦為 150W), 當系統達到第一條曲線的最大功率點 時,此時的逆變器輸出功率 PSM_P0 約略為 100W。在此條件下,若 要採用下垂控制藉由調整ω進而改變 PSM_Poset 使 PSM_P0 輸出降 低不易實現。因此將設定值 PSM_P0 調整為 110(使得 PSM_Poset 與 PSM_P0 相近), 如圖 7.14 所示,將在此條件下調整ω進行下重控制。

GWINSTEK

圖 7.14 PSM_P0 設定值 為 110

如圖 7.15, 7.16 所示,由 SAS 程式中,可看到第一條曲線會由初始啟動狀態逐漸上升,且最終到達最大功率點。

如圖 7.17 所示,在此條件下將 APS-300 頻率調整為 51Hz。如圖 7.18,此時 PSM_Poset 因 ω 上升而下降,使得 PSM_Po 隨之降低。

GWINSTEK

如圖 7.19,當系統不再以最大功率輸出時,則 PV 曲線必須偏離最大功率點以維持功率平衡。

圖 7.17 APS-300 設定為 51Hz	
圖 7.18	DSP Oscilloscope
 PSM_Poset 與	Portsetings Serial port: 26 Test Bad rate: 115200
PSM_Po因ω上	Parity ded: Flore
升而改變	Contrauture Party-bet Al vanables Selected vanables Al vanables Selected vanables Party-bet > Party-bet > Party-bet P
圖 7.19	g Edoland V Socie V
SAS 偏離最大功	CO014 - W 22 3rg 63 Mode We 45555 - C
率點	Am Image: State of the stat
	Inc Ing Tr.1- 1.7 1.2 Tr Margani Middle Tr Inc. 1.6 A.a. Tr.3-

如圖 7.20 與 7.21 所示,亦可發現當 APS-300 的頻率由 50Hz 調整為 51Hz 時,逆變器的輸出電流由 2.07A (實際值為 2.588A)降為 1.53A (實際值為 1.913A),代表輸出功率隨之下降

G*EINSTEK*

如圖 7.22 所示,於 ASP-300 頻率為 51Hz 時,將 PV 曲線由第一條 切換至第二條,其輸出功率瞬間下降。如圖 7.23 所示,即使輸出功 率瞬間下降,但其仍逐漸上升且最終上升至與第一條曲線相近的功率 點。

GWINSTEK

圖 7.22 2020/4/29 下午 07:30:36.18 SAS 處於切換至 SAS_Config_2 -第二條的瞬間 0.13 7.62 0 圖 7.23 2020/4/29 下午 07:31:09.62 SAS 處於第二條 SAS_Config_2 -曲線的功率輸出 (非最大功率點) C 49.45 1.80

(2) 虛功控制(Q-V)

如圖 7.24 所示, APS-300 輸出電壓為 40V,此時逆變器無虛功輸出。 如圖 7.25 所示,由 DSP 示波器可看到 PSM_Vs 與 PSM_Is 無相位差, 如圖 7.26 所示,亦可在實際電路中觀測。

實驗7單相光伏並網逆變器PQ控制

圖 7.25 Port settin 市電電壓 40V 時 Serial port: Baud rate: Parity check DSP 示波器電壓 Continuous 與電流波形 All variable PSM_Vo PSM_Vp PSM_Ib PSM_Ibc PSM_Ibc PSM_Ibc PSM_Ibc PSM_Idro PSM_Is PSM_Vs = << Set input vi Update All PSM_Kp Update 0.5 PSM_KI Update 150 PSM_P0 Update Var. PSM_Is • 1 PSM_Kp_p Update F t Once Scale Disconnect Level 0 Pause Offset C AL Delay 0 Data Integrity %: AC Gnd GUINSTEK 21 Apr 2020 18:01:58 圖 7.26 市電電壓 40V 時 示波器電壓與電 流波形 -288.8us 2 RHS 2.8

如圖 7.27 所示,將 APS-300 輸出電壓調整為 36V,因此逆變器有虛 功產生。如圖 7.28 所示,可看到 PSM_Vs與 PSM_Is 間有了相位差 且 PSM_Is 領先 PSM_Vs,如圖 7.29 所示,亦可在實際電路中觀測。

圖 7.27 APS-300 電壓為 36V 之設定

GWINSTEK

PEK-510 實驗指導書

圖 7.28 Port setti 市電電壓 36V 時 Serial port: Baud rate: Parity chee DSP 示波器電壓 Conti 與電流波形 PSM_Vo PSM_Vp PSM_Ib PSM_Ib PSM_Ibc PSM_Ibc PSM_Ip PSM_Pose PSM_Idro << Update All PSM_Kp Update 0.5 PSM_KI Update 150 PSM_P0 Update Var. PSM_Is 5 ms/Div ÷ Variable OFF PSM_Kp_p Update Color e Background If € Once [Scale 2 V/Div Disconnect Pause Level 0 Offset Auto scale Data Integrity % G≝INSTEK 21 Apr 2020 18:01:07 圖 7.29 市電電壓 36V 時 示波器電壓與電 流波形 99.98 () -200.0us 2

如圖 7.30 所示,將 APS-300 輸出電壓調整為 44V,因此逆變器有虛 功產生。如圖 7.31 所示,可看到 PSM_Vs與 PSM_Is 間有了相位差 且 PSM_Is 落後 PSM_Vs。如圖 7.32 所示,亦可在實際電路中觀測。

圖 7.30 APS-300 電壓為 44V 之設定

G^W**INSTEK**

實驗7單相光伏並網逆變器PQ控制

結論

由實驗結果得知,當市電頻率上升時,逆變器會依頻率變化的程度降 低其輸出實功的大小。而當市電電壓變化時,逆變器會依電壓變化的 程度調整其輸出虛功的大小。

電路模擬

系統規格如下:

DC bus Voltage $V_d = 80V$ AC Source Voltage $V = 40V_{rms}$ $F_s = 20kHz$, $V_{tri} = 10V_{pp}$ (PWM) L = 661.5uH, C = 10uF $K_s = 0.3$ (AC current sensing factor) $K_v = 1/80$ (AC voltage sensing factor) $K_v = 1/40$ (DC voltage sensing factor)

G^WINSTEK

依照上述參數所建立的類比電路如下圖 8.1:

PSIM 檔名為:

PEK-510_Sim8_1P_Islanding_Prot_Inv(50Hz)_V11.1.5_V1.1

圖 8.1 實驗八 PSIM 類比電路圖

其模擬結果如圖 8.2:

圖 8.2 實驗八類比電路模擬波形

再参照類比電路所建立的數位電路如下圖 8.3 PSIM 檔名為: PEK-510_Lab8_1P_Islanding_Prot_Inv(50Hz)_V11.1.5_V1.1

圖 8.3 實驗八 PSIM 數位電路圖

其模擬結果如圖 8.4:

圖 8.4 實驗八 數位電路模擬波形

模擬確認無誤後,利用"Simulate"的 "Generate Code"自動產生對應的 C Code。

實驗設備

本實驗所需的設備如下,設備使用前請參照各設備使用說明書:

- PEK-510一台
- PEK-005A 一台
- PEK-006一台
- PTS-5000 一台(其中使用 GDS-2204E, PSW160-7.2, APS-300, GPL-500)
- PC 一台

實驗步驟

1. 實驗接線圖如圖 8.5,請依此圖完成接線。

圖 8.5 實驗八接線圖

2. 接線完畢後,先確認 PEK-510 開關為 OFF,之後開啟 PEK-005A 的開關,開啟後 DSP 的紅色顯示燈亮起,如圖 8.6,此時表示 DSP 電源正常。

3. 請依照附錄 B(燒錄流程)進行燒錄,再請依照附錄 C(RS232 連線) 進行連線。

4. 如圖 8.7 所示,將示波器探棒分別接至 Vo, Io。

圖 8.7 示波器探棒接線 圖

5. 如圖 8.8 所示, PSW160-7.2 設定為電壓 100V, 電流 1.5A。

圖 8.8 PSW 設定值

- 4. 如圖 8.9 所示, APS-300 操作步驟為:開啟 APS-300 電源→APS-300 設定頻率為 50Hz →操作模式為 1P2W→電壓為 40V。
- 圖 8.9 APS-300 設定圖

7. 如圖 8.10 示, GPL-500 操作步驟為:開啟 GPL500 電源→Single Phase Load 旋鈕調至 2(Resistance with LC Load) →1SS、2SS、 3SS 設定皆為 ON→LCS 設定為 ON→4CS(電容 5uF)設定為 ON(電容設定依照實驗需求),此設定為 RLC 負載模式→開啟 AC Switch。如圖 8.5 及 8.10 所示, APS-300 接至 AC Input, 再藉由 單相測試線由 AC Output 接至 PEK-510。

圖 8.10 GPL-500 單相 RLC 負載設定

8. 設定完畢後,將 PSW 與 APS-300 電源輸出後,再將 PEK-510 開 關開啟。

實驗目的

本實驗模擬逆變器與電網並聯運行時,電網發生故障而導致電力中斷, 逆變器因處於孤島狀態而未跳脫,藉由加入主動頻率偏移偵測(AFD) 的控制方式使逆變器能即時跳脫。

實驗結果

(1) 未建立孤島現象

如圖 8.11 所示,當 PEK-510 開關開啟後,可看到此時 PSW 提供功率為 120W,而 APS-300 亦提供單相 8.4W 的功率。如圖 8.12 所示,此時將 AC Switch 斷開(也就是將市電輸入中斷),逆變器因察覺市電已斷開而跳脫。

(2) 建立孤島現象

為建立孤島現象,需藉由調整 PSW 輸出功率,使 APS-300 輸出功率 降為零。如圖 8.13 所示,當 PSW 輸出電流調整為 1.6A, PSW 輸出功 率為 130W 時、此時 APS-300 輸出功率為零。

GWINSTEK

在此條件下,將 GPL-500的 AC Switch 斷開,PEK-510仍持續工作,即表示逆變器無法察覺市電已斷開而持續動作,此時即為孤島現象。如圖 8.14 所示,由 Vo可得知系統所產生之諧振頻率為 50Hz。

若 APS-300 輸出功率為零,且 AC Switch 斷開後,PEK-510 依舊跳 脫,則表示此時系統所產生之諧振頻率不在設定範圍內(本實驗設定 頻率為 48~52Hz),須先關閉 PEK-510,之後關閉 PSW 及 APS-300 。此時需將 GPL-500 之並聯電容做微調(1CS~5CS)。當完成並聯電 容微調後,依序重複前面步驟,直到 PEK-510 不跳脫。如圖 8.15 所 示,本實驗所採用之並聯電容為 4CS(5uF)。

G^WINSTEK

如圖 8.16 所示,產生孤島現象後,藉由 PSIM 的 DSP 示波器透過調整命令值 PSM_d_thita(初始值為零),可改變偏移角度。

A. 偏移角度為1

如圖 8.17 所示,輸出電壓頻率為 50.48Hz。

B. 偏移角度為4

如圖 8.18 所示,輸出電壓頻率為 51.42Hz。

- C. 偏移角度為 5 輸出電壓頻率>52Hz,此時 PEK-510 跳脫。
- D. 偏移角度為-1

如圖 8.19 所示,輸出電壓頻率為 49.91Hz。

- E. 偏移角度為-6如圖 8.20 所示,輸出電壓頻率為 48.33Hz。
- F. 偏移角度為-7 因輸出電壓頻率<48Hz,此時 PEK-510 跳脫。

GWINSTEK

G^WINSTEK

圖 8.20 偏移角度為-6

將不同偏移角度以及相對電壓頻率填入表 8.1

偏移角度	輸出電壓頻率(Hz)
0	50.00Hz
1	50.48Hz
2	50.80Hz
3	51.11Hz
4	51.42Hz
-1	49.91Hz
-2	49.56Hz
-3	49.23Hz
-4	48.91Hz
-5	48.66Hz
-6	48.33Hz

由表 8.1 發現,隨著偏移角度為正值增加,輸出電壓頻率也逐漸增加, 直到 PEK-510 跳脫(輸出電壓頻率大於 52Hz)。隨著偏移角度為負值 增加,輸出電壓頻率也逐漸下降,直到 PEK-510 跳脫(輸出電壓頻率 小於 48Hz)。

結論

由實驗結果可看到,主動頻率偏移偵測可在系統處於孤島現象時利用 調整偏移角度,使頻率超出系統所設定之範圍,達到孤島保護的功能。

Single Phase PV Inverter	100
F28335 Delfino control CARD	104
Gate Driver	105
Gate Driver Power	106

Single Phase PV Inverter

F28335 Delfino control CARD

Gate Driver

Gate Driver Power

附錄 B C code 燒錄流程

本附錄以 "PEK-550_Lab1_3P_SVPWM_Inv (50Hz)_V11.1.5_V1.1" 為例進行操作說明,步驟 如下。

操作步驟 1. 在 PSIM 程式中開啟數位電路檔案 "PEK-550_ Lab1_3P_SVPWM_Inv(50Hz)_V11.1.5_V1.1" ,在"Simulate"下擊點"Generate Code", PSIM 會自動生成 C Code,如下圖。

G^wINSTEK

	×
	- 0
	_
// This code is created by SimCoder Version 11.1.5.1 for F2833x Hardware Target	
// SimCoder is copyright by Powersim Inc., 2009-2018	
// Date: January 13, 2020 16:55:35	
Finclude <math.h></math.h>	
Finclude "P5_bios.h"	
hypedel float Default lype; dialine Carlow Time 0 Carlow Time 0	
Potenie Occurrent of Scotopy Intero	
interrunt void Task0:	
which Tasks [10]	
served line 16 BPD Countering to 12 Ben (1) Miles	
cuent om to ray, poster = 130, // mrz	
extern Defaultive Gob/coal:	
extern DefaultType (GblVconb1;	
extern DefaultType IGblVconc1;	
extern DefaultType fGbfstart;	
BST Rulliam a Child Counter #400001	
PSI_Data aCbSribValue[] = 0.61:	
Uint16 aGbl5ciOutAllow[12] = [0,0,0,0,0,0,0,0,0,0,0];	
Uim16 aCblSciOutCnt[12] = {0,0,0,0,0,0,0,0,0,0,0,0,0];	
Unit16 nGbSciState = 0;	
UNRED #UBDOUMDSCHT[12] = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
#define PSC SCI SENDOUT FLAG 0x2000	
#define PSC_SCLINITIAL 0	
#define PSC_SCI_START 0x5000000	
#define 1%2_SQL_PAUSE 0x1000000	
POPTINE PSL_SULRESTART UKZUUUUUU	

 系統會在 PSIM 電路檔案所在的資料內,產生 一個與 PSIM 電路檔案相同檔名的資料夾,並 將 C Code 與燒錄所需的相關檔案存放在此資 料夾內,如下圖

<	PEK-550_Lab1_3P_SVPWM_Inv(50Hz)_V11.1.5_V1.1 (C code)>	2020/1/13下	₩ 01:54	檔案資料夾	
	E PEK_Subcircuit SVPWM_V11.1.5_V1.1	2019/8/9 下午	05:20	PSIM Document	14 KB
	E PEK-550_Lab1_3P_SVPWM_Inv(50Hz)_V11.1.5_V1.1	2019/12/24	午 02:19	PSIM Document	171 KB
	PEK-550_Sim1_3P_SVPWM_Inv(50Hz)_V11.1.5_V1.1	2019/12/24	「午 02:18	PSIM Document	105 KB
	名稱	修改日期	類型	大小	
	F2833x_Headers_nonBIOS	2020/1/13 下午 0	Windows 命令指	9 KB	
	6 F28335_FLASH_Lnk	2020/1/13 下午 0	Windows 命令指	7 KB	
	F28335_FLASH_RAM_Lnk	2020/1/13 下午 0	Windows 命令指	6 KB	
	F28335_RAM_Lnk	2020/1/13 下午 0	Windows 命令指	4 KB	
	🖬 passwords	2020/1/13 下午 0	ASM Source File	4 KB	
	PEK_550_Lab1_3P_SVPWM_Inv_50Hz_V11_1_5_V1_1	2020/1/13 下午 0	C Source File	13 KB	
	PEK_550_Lab1_3P_SVPWM_Inv_50Hz_V11_1_5_V1_1	2020/1/13 下午 0	Altium Embedde	5 KB	
	PS_bios	2020/1/13 下午 0	C/C++ Header File	22 KB	
	🗃 PsBiosRamF33xFloat	2018/7/25 上午 0	Altium Library	631 KB	
	🗃 PsBiosRomF33xFloat	2018/7/25 上午 0	Altium Library	636 KB	
	🔐 rts2800_fpu32_fast_supplement	2013/1/16 下午 0	Altium Library	17 KB	

3. 開啟 CCS,在"Project"下,擊點"Import Legacy CCSv3.3 Projects",如下圖。

 在"Select a project file"中,擊點"Browser", 尋找 C Code 所在的資料夾並選取副檔名為.pjt 的檔案,如下圖。

Import Legacy CCS Project	ts	
Select Legacy CCS Project Select a legacy CCS project	or a directory to search for projects.	
• Select a <u>p</u> roject file:	D:\PEK NEW PSIM\PEK-550_V11.1.5\PK	B <u>r</u> owse
Select search-directory:		Browse
Scopy projects into work Create a gubfolder fr	space or each project or each Eclipse project (recommended)	
? < <u>B</u>	ack Next > Finish	Cancel

G≝INSTEK

 選擇"Copy projects into workspace"後,擊點"Next"後,再擊點"Finish",即可將C Code 導入到 CCS 程式中,如下圖。

🔅 Import Legacy CCS Projec	ts	- • ×
Select Legacy CCS Project Select a legacy CCS project	or a directory to search for projects.	
 Select a project file: Select sgarch-directory: 	D:\PEK NEW PSIM\PEK-550_V11.1.5\PEK	Browse
Discovered legacy projects:		Select All
Ŷ		
Copy projects into work	space a each project or each Eclipse effect (recommended)	
? < <u>B</u>	ack Next > Einish	Cancel

Select Compiler Select a compiler version for e			
Project	Device Fa	Compiler	Edit
PEK_550_Lab1_3P_SVPW	🛋 C2000	16.9.3.LTS	
			_
			_
		3	
		ا لې	,
		V	
? < <u>B</u> ack	Next	> <u>E</u> inish	Cancel
Import Legacy CCS Projects			<u> </u>
Minport Legacy CCS Projects Select Compiler Select a compiler version for ea	ach migrated p	roject.	
Import Legacy CCS Projects Select Compiler Select a compiler version for ex Project	ach migrated p Device Fa	roject. Compiler	Edit
Import Legacy CCS Projects Select Compiler Select a compiler version for ex Project Project PEK_550_Lab1_3P_SVPW	ach migrated p Device Fa A C2000	roject. Compiler 16.9.3.LTS	<u> </u>
Import Legacy CCS Projects Select Compiler Select a compiler version for ex Project Project PEK_550_Lab1_3P_SVPW	ach migrated p Device Fa A C2000	roject. Compiler 16.9.3.LTS	
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PFK_550_Lab1_3P_SVPW	ach migrated p Device Fa A C2000	roject. Compiler 16.9.3.LTS	
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects	ach migrated p Device Fa Device Fa	roject. Compiler 16.9.3.LTS	
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	Device Fa Device Fa C2000 Your attention v project.log f	roject. Compiler 16.9.3.LTS were encountered	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	Device Fa Device Fa C2000 Your attention v a 'project.log' f	roject. Compiler 16.9.3.LTS were encountered ile, in the root of e	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000	roject. Compiler 16.9.3.LTS were encountered lie, in the root of e	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000 vour attention v " project.log" f	roject. Compiler 16.9.3.LTS vere encountered ile, in the root of e	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000 vour attention a 'project.log' f	roject. Compiler 16.9.3.LTS vere encountered ile, in the root of e	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000 vour attention v "project.log" f	roject. Compiler 16.9.3.LTS vere encountered ile, in the root of e	Edit.
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000 vour attention o "project.log" f	roject. Compiler 16.9.3.LTS vere encountered ile, in the root of e	Edit
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000 vour attention o "project.log" f	roject.	Edit
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(s). Please see the	ach migrated p Device Fa C2000	roject.	Edit
Import Legacy CCS Projects Select Compiler Select a compiler version for er Project Project PEK_550_Lab1_3P_SVPW Import Legacy CCS Projects Issues that may require y project(0). Please see the	ach migrated p Device Fa C2000	roject.	Edit

- 選取 C Code 檔案後,在 "Project" 下選 擇 "Properties",設定如下:
 - (1) 在 Main 中 Variant 選取"2833X Delfino 中
 - 的 TMS320F28335"
 - (2) 在 Main 中 Connection 選取"Texas Instruments XDS100v1 USB Debug Probe"
 - (3) 在 Main 中 Linker command file 選 取"none"
 - (4) 在 Products 中將 XDAIS 取消選擇 (如果你

的 CCS 版本無此選項,則不須理會)

	General			Q+0+
Resource General Build C2000 Compiler Processor Options Optimization Include Options Performance Advisor Predefined Symbols	Configuration: 1.Flashf	RamRalease [Active]	• Manage	Configurations.
Advanced Options	Variant: 2833x D	lelfino	TMS320F28335	•
> C2000 Linker C2000 Hex Utility [Disab Debug	Advanced settings	struments XDS100v1 USB DebU	Verify (applies to automatically	whole project)
) - C2000 Linker C2000 Hex Utility [Disab Debug	Commution Texas In Mana Advanced settings Compiler version:	struments XDS100v1 USB Debuy ge the project's target-configuration TTv16.9.3.LTS	Verify (applies to automatically	whole project)
> C2000 Linker C2000 Hex Utility [Disab Debug	Compiler version: Output type:	struments XDS100v1 USB Debuy ge the project's target-configuration TTv16.9.3.LTS Executable	Verify (applies to automatically	whole project)
> C2000 Linker C2000 Hex Utility [Disab 6 Debug	Advanced settings Compiler version: Output type: Output format:	struments XD51001 USB Debty ge the project's target-configuration Ttv16.9.3.LTS Executable legacy.CDFF	Verify (applies to automatically • [•	whole project)
> C2000 Linker C2000 Hex Utility [Disab Debug	Competence of Advanced settings Compiler version: Output type: Output format: Device endianness:	struments XDS100y1 USB Deboye ge the project's target-configuration TLv16.9.3.LTS Executable legacy COFF Inte	Verify (applies to automatically	whole project)
▶ C2000 Linker C2000 Hex Utility (Disab	Advanced settings Compiler version: Output type: Output format: Device endianness: 7 e commune	struments XDS100V1 USB DBD ge the project's larget-configuration Tt v16.9.3.LTS Executable (seque) CDFF (stel)	Verify (applies to automatically	More Boowse

G^WINSTEK

pe filter text	General	(c) • c) •
Resource General Build a C2000 Compiler Processor Options Optimization Include Options Performance Advisor	Configuration [FlashRamRelease [Active]	Manage Configuration Select All
 > Advanced Options > C2000 Linker C2000 Hex Utility [Disabled] Debug 		Detelect All
		① ①
		V

 設定完畢後,擊點"Build",進行編譯。編譯結 束,如無 Errors,代表此程式可進行燒錄, Warnings 不影響燒錄,可忽略。

將 PEK-006 分別連接到 PC 與 PEK 模塊上,之後擊點 "Debug",進行燒錄。

 · 燒錄結束後,擊點"Terminate",並移除 PEK-006,如此即完成燒錄程序。

 如需刪除檔案,選取 C Code 檔案後, 在 "Edit"下選擇 "Delete", 勾選"Delete project contents on disk"後,擊點"OK"後完 成。

ŵ w	-	ace_v7 - CCS Edit - Coo	le Composer Studio	1.00
File	Edit	ie Navigate I	1 Run Scripts Window Help	
	÷	Undo	Ctrl+Z → 🖓 🗐 🏷 (> → <> →	
	\Diamond	Redo	Ctrl+Y	A]
IG P	d	Cut	Ctrl+X	
▶ 🔏		Сору	Ctrl+C	snkamkeleasej
	ß	Paste	Ctrl+V	
1	-	Dalata		
	-	Delete	Ctril+A	
		Delete	Carry	
		Find/Replace	Ctrl+F	
(m				
81	Jelet	e Resources		
		Are you sure you want	to remove project	
	2	PEK_550 Lab1 3P SVE	WM Inv 50Hz_V11_1_5_V1_1' from the wo	rkspace?
	Del	ete project contents on	disk (cannot be undone)	
P	oiect	acatter.		
	\Use	rs\and1IIII\workace	VZVPEK 550 Lab1 3P SVPWM 14	(11 1 5 V1 1
	(000	ZX		
		11	<u>بالج</u>	
		u	\sim	
		6		
		S	Previe <u>w</u> > OK	Cancel

操作步驟

將 PEK-005A 接至 PEK 模塊,確保 DSP 工作狀態正常。

 將 RS232 一端連接至電腦 PC,另一端接到 PEK 的 RS232 端□。

3. 開啟電腦的裝置管理員,確認 RS232 所使用的連接埠(COM)位置。

4. 開啟 PSIM 程式,點選上方選單 Utilities 中 DSP Oscilloscope 選項。

- 5. Port settings 的設定如下:
 - (1) Serial port 選取 RS232 所使用的連接埠 (COM)位置。
 - (2) Baud rate 設定為 115200。
 - (3) Parity check 設定為 None。

G≝INSTEK

DSP Orsiller report Port settings Serial port 13 Fet Back rate: 115200 v Party check: None v - Opering and C - Continuous C Snap-shot	
Select output vaniables Al vaniables Selected vaniables Set input vaniables Set input vaniables Update Al	No Data
Correct Discorrect Pause	Timebase colar Variable Togger Change Bodground Color V V VI VI

6. 設定完成後點選 Connect 進行 RS232 連線。

7. 正確連線後,即可看到 PSIM 電路內所規劃的 output variables 與 input variables。

G凹INSTEK

DSP Oscilloscope	
Port settings Serial port: 13 Test: Baud rate: 115200 '¥' Parity check: None '¥'	
Operation mode Continuous C Snap-shot	
Select output vaniables Al versative Selected vaniables Selected vania	No Data
PSM_Duty 0.6 Update 4	Timebase scale Variables Tigger
	Change Background Color F Conce OFF
Connect Disconnect Pause	Save Offset - Level -
Data Integrity %0	Help DC AC Grd

附錄 D SAS軟體操作手

介紹

操作步驟

完整 PTS 軟體系統包含 SAS 信號追踪, BAT 模擬與即時信號量測子系統,透過系統自動偵測功能,配置各設備於應對的功能上。

安裝與啓動

 安裝完整 PTS 軟體:下載 PTS5 installer,並解壓縮 後於 c:\PTS installer 後,進入 Volume。執行 Setup.exe,如下。

此時系系尋找是否已安裝程式執行時,必要元件;若沒有或既有元件版本較低,即列出並等候 安裝;若已存在有高於執行程式所需要的版本時,則不安裝。

G≝INSTEK

📳 PTSMair	
D	estination Directory Select the installation directories.
A, di	Il software will be installed in the following locations. To install software into a ifferent location, click the Browse button and select another directory.
ſ	Directory for PTSMain
	C//G WInstek/PTS_EmuSystem/ Browse
	Directory for National Instruments products DVProgram Files/National Instruments C <back next="">> Cancel</back>

使用預設路徑即可;按"Next"繼續,以完成安裝 工作。此時,此處會列出已經安裝與即將安裝的 程序,包含必要的執行元件:

U PTSMain	
Start Installation Review the following summary before continuing.	
Adding or Changing • PTSMonFiles	
Click the Next button to begin installation. Click the Back button to change the installation settings.	
Save File << Back Next >>	Cancel

按 Next,以執行後續安裝工作。

🗐 PTSMain	
Overall Progress: 30% Complete	
Updating component registration	
	K Back Next >> Cancel

安裝項目進度與總體安裝進度。

U PTSMain			
Installation Complete			
The installer has finished updating your system.			
(<< <u>B</u> ack	<u>N</u> ext	>> <u>E</u> inish

- 2. 下載 PTS SAS 套件程式,將之解壓縮至前項安裝 後的路徑下;此時會在 c:\gwinstek\下新增一目 錄。
- 切換至目錄後,可以選擇在"桌面"上建立快捷 鍵,以方便日後執行;操作畫面如下:

起会管理 - 🗃 開紅 幾長 新規選	11 7						80	• El 6
★ 我的最愛	ń	名稱				修改日期	類型	大小
♥ Dropbox 建下載			EK-54	0 Main.aliases		2020/1/6 下 2019/8/7 下 2020/1/6 下	XML Docume XML Docume ALIASES 撤离	2 KB 1 KB 1 KB
■ (R)B ■ Google 雲朗硬碟 ■ 最近的位置 ■ 媒體種	£	P P P	-	A A-1- 開設(O) 以多統管理員奏分数行(A) 提題於解想寄性(Y) 7-Zip	,	2020/1/6 下 2020/1/6 下 2020/1/6 下	應用程式 相感設定 文字文件	938 KB 1 KB 6 KB
• 4 99				Git Init Here Git Bash				
ca Genuine Win7_64bit (C:)			ĸ	病毒掃垢(V)				
🖙 Data (D:)			10	TortoiseGit				
晶 CD 光碟機 (E)				WinMerge				
CD 光碟機 (F:)				訂倡到工作列(N)				
📥 Data (L:)				釘攝到 [開始] 功能表(U)				
😪 dso (\\172.16.5.225) (Z:)				遗愿祖顺(V)				
🎍 MSN 上我的社群				傳送到(N)		Uropbox		
🕌 我在 MSN 的網站				罰下(1) 復剰(C)		Skype TeamViewer		
₩ 網路				建立建築の		文件		
IF-MEETINGROOM				副時(D)		Nama#	5	
IN 4F-MEETINGROOM				重新自名(M)		101 (第三字论者		
ISF-WAREHOUSE				内容(R)		上 聖織的 (zippe	d) 資料夹	
AJHUANG			-		-	😪 dso (\\172.16	5.225) (Z:)	
ASUS-S14								
i∎ -B-	-							

在 PTS_PVMain 上,按滑鼠右鍵,開啓主選單; 移至"傳送到"項目上,開啓傳送目的地選項; 移至並選擇"桌面(建立捷徑)"項目上

日後要再執行時,可於"桌面"上,找到該捷徑並 執行它即可。

 在控制台内,找到"程式與功能"項目,並執行, 找到 PTSMain

	解除安裝或變更程式 容要解除效裝整片。誰但商業重数整式,然後按一下(8	前传改装)、[勝更] 刘 [修復]、				
	后白雀垣 • 解除安装				- 11 -	
	名稱 *	發行者	安裝於	大小	版本	
	IP-CAD 2002 Service Pack 1		2010/10/5			
	Dicasa 3	Google, Inc.	2013/4/11		3.9	
	EIPL-2303 USB-to-Serial	Prolific Technology INC	2015/10/27		1.8.0	
	PTSMain	Good Will Instrument Co., LTD.	2020/1/23	3.99 MB	1.1.0	
	EPyQt GPL v4.11.2 for Python v2.7 (x32)		2014/10/20		4.11.2	
	EPython 2.7 matplotlib-1.3.1		2014/10/20			
	Python 2.7 numpy-1.8.0		2014/10/20			
	EPython 2.7 PIL-1.1.7		2014/10/20			
	RPython 2.7 pyparsing-2.0.1		2014/10/20			
	RIPython 2.7 pyserial-2.7		2014/10/20			
					_	

解除安裝

界面說明

程式運行界面

圖表1 軟體主畫面

已設定系統中建置之 PV 軌跡曲線

即時數值監控

圖表 3	Voltage 125.75
	Current 3.53
	Power 443.91
	Intensive

Voltage與 Current將會標示於圖表 2 左側 IV曲線圖上,Voltage與 Power 則標示於圖表 2 右側 PV曲線圖上 Intensive 表示畫面上滯留的資料點數,可以追踪 IVP 實際的變動軌跡

操作

設備連線設定

圖表 4 設備選擇

PV Source	
I d	

建立系統連線,透過下拉式選單,指定適當設備。

G^w**INSTEK**

建立 PV 參考曲線

圖表 5	Voc 77	Vmp 64.032	Margin 0	SAS_Create
前次設定軌	Isc 12	Imp 10	Mode	
跡參數				

SAS_Create:建立新的曲線,設定畫面如下:

圖表 6 SAS 軌跡參 數設定

🗱 Config 📃
Voc 77.000
Isc 12.000
Vmp 64.032
Imp 10.000
Margin 0
Mode Auto
OK Cancel

圖表 7 軌跡參數表

	SAS Table		
0	Voc	Vmp	
	152	140	
	Isc	Imp	
	4	0.45	
	Margin	Mode	
	0	None	
	<		Þ

當建立完成新的曲線後,將 會在 VI 及 PV 圖表中即時 顯示該曲線,同時在 SAS 表格中增加該曲線參數

Voc: 開路電壓

Isc: 短路電流

Vmp: 最大功率點電壓

Imp: 最大功率點電流

Margin: 輸出在此餘裕範圍 內不更新(%)

Mode: 使用時選擇 Auto 模式

OK: 確定參數設定,同時匯 入 SAS Table 中

Cancel: 放棄本次修改設定 值

SAS Table:已規劃好,準備 寫入設備內的曲線,透過滑 鼠右鍵開啓可操作功能:

Import Table, Export Table Import Table: 自存檔中, 載入先前已建立之曲線與參 數

Export Table: 匯出目前使用 的曲線與參數

游標指向 SAS Table 後,透 過鍵盤 delete 鍵,刪除目前 的設定(軌跡曲線) 上傳/載入測 PV 軌跡曲線參數

圖表8

將目前 SAS Table 中設定好之軌跡曲線參數寫入 設備中等待執行,同時 PSW 進入 SAS 運行模式 Output OFF/ON

圖表 9

啟動/關閉 PSW 輸出 在 SAS 模式下, PSW 輸出將按選定之曲線進行 反應。而在一般模式下, PSW 將做一般標準功能

選擇軌跡參數

圖表 10

SAS_Config_1

參考軌跡參數選 擇

停止與結束

圖表 11

一旦進行上傳動作後,設備即進入 SAS 模式,所 有 Output ON/OFF 控制,決定 PSW 是否進行 追跡操作

若要 PSW 回復到一般操作模式,必須選擇停止軟件,再重新啓動。

附錄說明

A:PSW 追跡模式

SAS 程式啓動後,只要上傳軌跡曲線程式,PSW 便啓動追跡模式, 此時使用者可在已建立之軌跡程式間,進行切換,若要離開追跡模式, 則必須按"STOP"讓設備回到預設操作模式下。

B:一般模式

在系統啓動時,會處於一般操作模式,透過成功上傳 PV 軌跡曲線"UpLoad"後,PSW 進入追跡模式。

C: IVP 即時記錄曲線

在追跡模式下,除 IV 與 PV 軌跡外,另提供各自獨立顯示軌跡記錄圖

